好文档 - 专业文书写作范文服务资料分享网站

数与代数知识点大全

天下 分享 时间: 加入收藏 我要投稿 点赞

总复习(数与代数概念部分) 一、数的意义:

1、整数:像—3、—2、—1、0、1、2、3……这样的数统称为整数。整数的个数是无限的。没有最小的整数,也没有最大的整数,自然数是整数的一部分。

2、自然数:用来表示物体个数的数。像1、2、3、4、5……叫做自然数。一个物体也没有用0表示。自然数的个数是无限的,最小的自然数是0,没有最大的自然数。

3、小数:把整数“1”平均分成10份、100份、1000份……这样的一分或几份的数是十分之几、百分之几、千分之几……可以用小数表示。 4、小数的分类:

(1)纯小数和带小数:整数部分是o的小数叫做纯小数,整数部分不是o的小数叫做带小数。

(2)有限小数和无限小数:小数部分的位数是有限的小数叫做有限小数;小数部分的位数是无限的小数叫做无限小数。

(3)循环小数:一个小数,从小数部分的某一位起一个数字或几个数字依次不断地重复出现,这样的小数叫做循环小数。

(4)循环节:一个循环小数的小数部分,依次不断重复出现的数字叫做这个小数的循环节。 (5)纯循环小数和混循环小数:循环节从小数部分第一位开始的,叫做纯循环小数;循环节不是从第一位开始的,叫做混循环小数。 5、计数单位:个、十、百、千??以及十分之一、百分之一、千分之一??都是计数单位。 6、数位:各个计数单位所占的位置叫做数位。 7、十进制计数法:“十进制计数法”是世界各国最常用的一种计数方法。它的特点是每相邻的两个计数单位之间的进率都是“十”就是10个较低的计数单位可以进成一个较高的计数单位(既通常说的“逢十进一”), 这种以“十”为基础进位的计数方法,叫做十进制计数法。

8、整数和小数数位顺序表:

9、分数:把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。

(1)分数单位:把单位“1”平均分成若干份,表示这样的一份的数就是这个分数的分数单位。

(2)分数的分类:真分数:分子比分母小的分数叫做真分数。真分数小于1。假分数:分子比分母大或者分子等于分母的分数叫做假分数,假分数≧1

10、百分数:表示一个数是另一个数的百分之几的数叫做百分数,百分数也叫百分率或百分比。百分数的分数单位是1%。百分数的分母是100。

11、分数和百分数的关系:分数既可以表示一个数(后面可加数量单位);也可以表示两个数的比(两数之间的关系)。而百分数只表示一个数占另一个数的百分比(两数之间的关系),不能表示具体的数。因此百分数不带单位。

12、正数和负数:像1/3、+2、0.5、+4.5…这样的数叫做正数;像―1/2、―5.5、―6…这样的数叫做负数。

(不能认为:一个数的前面加上“+”号这个数就是正数,也不能认为:一个数的前面加上“—”号这个数就是负数)。比如:“—a”这个数我们就不能判断是负数,因为a可能:是正数、是负数、0都有可能;所以我们无法判断。

自然数是等于或大于0的整数,也可以说是不小于0的整数,既是非负整数。0既不是正数也不是负数。

二、数的读法和写法。

1、读法:从高位到低位,一级一级的往下读,每一级末尾的0都不读出来,其他数位的连

续的几个0都只读一个。

2、写法:从高位到低位,一级一级的往下写,哪一个数位上一个单位也没有,就在那个数为上写0。 (一)、小数的读法与写法:

读法:通常是整数部分按整数的读法去读,小数点读作“点”,小数部分按从左向右的顺序只读出数字。

写法:写小数时,整数部分按整数部分的写法去写,小数点写在个位的右下角,小数部分按从左向右的顺序

依次写出每一个数位上的数字。 (二)、分数的读法与写法:

读法:读分数时,先读分数的分母,再读“分之”最后读分子。读带分数时,要先读整数部分,再读“又”字,最后按分数部分的读法读分数部分。(分数线的读法:“分之”),

写法:写分数时,要先写分数线,再写分母,最后写分子,写带分数时,要先写整数部分,再写分数部分,整数部分要对其分数线,二者要紧凑。 (三)、百分数的读法与写法: 读法:百分数的读法与分数相同。

写法:百分数通常不写成分数形式,而是在原来的分子后面加上百分号“%”来表示。写百分数时,先写分子,再写百分号。 (四)、数的大小比较:

1、整数的大小比较:比较两个整数的大小,首先要看它们的位数,如果位数不相同,那么位数多的那个数就大;如果位数相同,就先从高位比起,相同数位上的数大的那个数就大; 2、小数的大小比较:先比较它们的整数部分,整数部分大的那个数就大;整数部分相同的,十分位上数大的那个数就大;十分位上的数字相同,百分位上的数大那个数就大。…以此类推。

3、分数的大小比较:分母相同的分数,分子大的那个分数就大;(因为分母相同,分数单位就相等,分子大的就意味着含有的分数单位多。);分子相同的分数相比较,分母小的那个分数大。(分子相同含有的分数单位数相同,分母小的分数分数单位就大)分子、分母都不同的分数相比较,先通分,转化成同分母分数后,再比较大小。

4、正数和负数的大小比较:负数都比正数小。0大于一切负数,0小于一切正数。 5、两个负数相比较:如果a>b(a、b均为正数),则-a<-b。就是在不看负数符号的情况下:数大的那个数反而小。 三、数的性质:

1、分数的性质:分子和分母同时乘上或者除以相同的数(0除外),分数的大小不变。(注意:分数的分单位有变化,分子、分母都有变化)

2、约分和通分:把一个分数化成和原分数相等的,且分子分母都比原分数小的的分数叫做约分;把异分母分数分别化成和原分数相等的同分母分数,叫做通分。 3、最简分数:分子和分母只有公因数1的分数叫做最简分数。 4、小数的基本性质:小数的末尾添上或去掉0,小数的大小不变。(注意:小数的位数有变化,精确度有变化。)

5、小数点的位置移动引起小数的大小变化规律:小数点每向右移动一位、两位、三位…这个数就扩大到原来的10倍、100倍、1000倍…小数点每向左移动一位、两位、三位…该数就缩小到原数的1/10、1/100、1/1000… 四、数的改写:

1、把多位数改写成以”万“或者以”亿”单位的数。

(1)直接改写:把多位数改写成以”万“或者以”亿”单位的数,先把原来的小数点向左移动4位或者8位,再在数后面加上“万”或“亿”字,中间用“=”连接。

(2)省略尾数改写成近似数:先用“四舍五入法”省略万位或者亿位后面的尾数,再在这个数的后面写上“万”字或者“亿”字。得出的是近似数,中间用“≈”连接。

2、求小数的近似数:根据要求,要把小数保留到哪一位,就把这一位后面的尾数按照“四舍五入法”省略,中间用“≈”。

3、小数、分数、百分数的互化:

小数化成分数方法:先看小数点后面有几位小数,就在1的后面添上几个0做分母,原来的小数去掉小数点后做分子。能约分的要约成最简分数。 分数化成小数方法:用分子除以分母。

小数化成百分数的方法:把小数的小数点向右移动两位,(位数不足时用0补足)同时在后面添上“%”。

百分数化成小数的方法:把百分数的分子的小数点向左移动两位,同时去掉后面的“%”。 百分数化成分数的方法:先把百分数的改写成分母是100的分数,然后约成最简分数。 分数化成百分数的方法:先把分数化成小数,在把小数化成百分数。

4、判断一个分数能否化成有限小数的方法:一个最简分数,如果分母中除了含有质因数2和5以外,不含有其它质因数, 这个分数就能化成有限小数;如果分母中含有了2和5以外的其他质因数,这个分数就不能化成有限小数。 五、数的整除:

1、整除:整数a除以整数b(b≠0),除得的商正好是整数且没有余数,我们就说数a能被数b整除。(也可以说b能整除a)。

2、因数和倍数:如果a×b=c(a、b、c都是非0整数)那么a、b就叫做c的因数,c就叫做a、b的倍数。

一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。 一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。

3、公因数和最大公因数:几个数的公有的因数,叫做这几个数的公因数;其中最大的一个叫做这几个数的最大公因数。

4、公倍数和最小公倍数:几个数公有的倍数,叫做这几个数的公倍数;其中最小的那个数叫做这几个数的最小公倍数。。

5、求两个数的最大公因数的方法:一般采用列举法,就是把两个数的因数一一列举出来,然后找出两个数的公因数,其中最大的那个数就是这两个数最大公因数。也可以采用短除法。 短除法求最大公因数的方法:把两个数写在 的横线上,先用着这两个数的公有质因数做除数,如果两个数的商是互质数,除数就是这两个数的所得的商就是这两个数的最大公因数。如果两个数的商不互质,就按照上面的方法继续除,直到两个数的商最后是互质数为止,然后把所有的除数连乘起来,所得的积就是这两个数的最大公因数。

6、求两个数的最小公倍数的方法:一般也采用列举法,把两个数的倍数数根据需要按从小到大的顺序列举一部分,然后找出两个数的公有的倍数,其中最小的那个公倍数就是这两个数的最小公倍数。也可以采用短除法。

短除法求最小公倍数的方法:把两个数写在 的横线上,先用着这两个数的公有质因数做除数,所 得的商写在横线下的相对应的位置,如果两个数的商是互质数,就把除数和最后的两个商连乘起来,所得的积就是这两个数的最小公倍数;如果两个数的商不互质, 就按照上面的方法继续除,直到两个数的商最后是互质数为止,然后把所有的除数和最后所得商连乘起来,所得的积就是这两个数的最小公倍数。 7、求两个数的最大公因数和最小公倍数的特殊方法:

如果两个数中,较大数是较小数的倍数,较小数就是较大数的因数,则较大数是这两个数的最小公倍数;较小数是这两个数的最大公因数。

如果两个数是互质数,则它们的最大公因数是1,最小公倍数是这两个数的乘积。 8、奇数和偶数、在自然数中,是2的倍数的数叫做偶数,不是2的倍数的数叫做奇数,最小的偶数是0,最小的奇数是1。 9、2、5、3的倍数的特征。

(1)2的倍数的特征:个位上是0、2、4、6、8的数都是2的倍数。 (2)5的倍数的特征:个位上是0或5的数都是5的倍数。

(3)3的倍数特征:一个数各个数位上的数字的和是3的倍数,这个数就是3的倍数。 10、质数和合数:一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数);一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。质数有且只有两个因数,合数至少有三个因数。 1既不是质数也不数合数。

11、质因数与分解质因数:每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的质因数。把一个合数用质数相乘的形式表示出来,就是分解质因数。

12、分解质因数的方法:把一个合数分解质因数,通常用短除法,分解质因数时,先用这个合数的质因数(通常用最小的开始)去除,得出的商如果是质数,就把除数和商写成相乘的形式;得出的商如果是合数,就照上面的方法继续下去,直到得出商是质数为止,然后把各个除数和最后的商写成连乘的形式。 13、大于0的自然数的分类方法:(1)根据是否是2的倍数,自然数可分为:奇数和偶数。(2)根据所含因数的个数,自然数可分为:1、质数、合数。 六、数的运算:新|课 |标|第 | 一| 网

1、加法的意义:把两个数(或几个数)合并成一个数的运算。

2、减法的意义:已知两个数的和与其中的一个加数,求另一个加数的运算。 3、乘法的意义:(1)一个数乘整数,就是求几个相同加数和的简便运算。

(2)一个数乘小数,可以看作是求这个数的十分之几,百分之几??是多少? (3)一个数乘分数,就是求这个数的几分之几是多少。

4、除法的意义:以这两个数的积和其中的一个因数,求另一个因数的运算。 5、计算方法:

1、加法的计算方法。

(1)整数和小数:相同数位对齐,从低位加起,哪一位上的数相加满十,要向前一位进1。(2)分数:同分母分数相加,分母不变只把分子相加。异分母分数相加,先通分,再按照同分母分数加法法则进行计算。 2、减法的计算方法:

(1)整数和小数:相同数位对齐,从低位减起,哪一位上的数不够减,从前一位退1,在本位上加10后再减。

(2)分数:同分母分数相减,分母不变,只把分子相减。(分子之差做分子)异分母分数相减,先通分,再按照同分母分数减法法则进行计算。 3、乘法的计算方法:

⑴整数乘法的计算方法:相同数位对齐,从末尾乘起,用第二个因数的每一位上的数去乘第一个因数,用哪一位的数去乘,乘得的积的末尾就要和那一位对齐,最后把每次乘得的积的相加。

⑵小数乘法的计算方法:计算小数乘法,末尾对齐,先按照整数乘法的计算方法算出积,再看因数中一共有几位小数, 就从积的末尾起向左数出几位,点上小数点。

⑶分数乘法的计算方法:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母(能约

分的要先约分)。

⑷除法的计算方法:整数除法的计算方法:从被除数的高位除起,除的时候,除数有几位数就先看被除数的前几位,如果前几位不够除,再多看一位,除到被除数的哪一位,就把商写在哪一位的上面,每次除得余数必须比除数小。

⑸小数除法的计算方法:除数是整数的小数除法,要按照整数除法的计算方法去除,商的小数点要和被除数的小数点对齐。如果除到被除数的末尾仍有余数,就在余数的末尾添上0继续除。除数是小数的除法:先移动除数的小数点,使它变为整数,除数的小数点向右移动几位,被除数的小数点也要向右移动相同位数(位数不够时,在被除数的末尾用0补足),然后按除数是整数的小数除法的计算方法进行计算。

⑹分数除法的计算方法:甲数除以乙数(0除外)等于甲数乘乙数的倒数。 倒数:乘积为1的两个数互为倒数。 七、则运算的验算方法:

1、加法的验算方法(1)用加法验算:调换两个加数的位置再加一遍。 (2)用减法验算:和—一个加数=另一个加数。 2、减法的验算方法:(1)用加法验算:差+减数=被减数。 (2)用减法验算:被减数—差=减数。 3、乘法的验算方法:(1)用乘法验算:调换两个因数的位置再称一遍。 (2)用除法验算:积÷一个因数=另一个因数。 4、除法的验算方法:(1)用乘法验算:如果没有余数,商×除数=被除数,如果有余数,商×除数+余数=被除数。

(2)用除法验算:被除数÷商=除数 或(被除数-余数)÷商=除数 八、0与1在四则运算中特性:a+0=a a×0=0 0÷a=0 a-0=a a×1=a a-a=0 a÷1=a 1÷a=1/a (在上面算式中a作除数时a≠0) 九、运算定律:

1、加法的交换律:a+b=b+a 2、加法的结合律:a+b+c=a+(b+c)

3、乘法的交换律:a×b=b×a 4、乘法的结合律:a×b×c=a×(b×c) 5、乘法的分配率:(a+b)×c = a×c+b×c 十、运算性质:

1、减法的运算性质:a-(b+c)=a-b-c a-(b-c)=a-b+c 2、除法的运算性质(除数不为0):a ÷(b×c)=a÷b ÷c a÷(b÷c)=a÷b×c (a+b)÷c=a÷c+b÷c (a-b)÷c=a÷c-b÷c 十一、运算顺序:

1、加法和减法叫做一级运算,乘法和除法叫做第二级运算。

2、在一个没有括号的算式里,如果只含有同一级运算,要从左往右依次计算;如果含有两级运算,要先算第二级运算,后算第一级运算。

3、在一个有括号的算式里,要先算小括号里面的,再算中括号里面的。 十二、解决问题:

1、复合应用题:用两步或两步以上计算来解答的应用题。分析此问题,一般采用分析法或综合法。

分析法:从要求问题入手,逐步找出解答问题所需要的信息,求得问题的解决。

综合法:从已知条件入手,利用已知条件看能解决什么问题,从而求得问题的解决。 2、解决问题的一般步骤:首先理解题意,找出已知条件何所求问题;其次。分析数量关系,确定先 算什么,再算什么,最后算什么;再次,确定每一步该怎样算,列出算式,算出得数;最后进行检验,写出答案。

数与代数知识点大全

总复习(数与代数概念部分)一、数的意义:1、整数:像—3、—2、—1、0、1、2、3……这样的数统称为整数。整数的个数是无限的。没有最小的整数,也没有最大的整数,自然数是整数的一部分。2、自然数:用来表示物体个数的数。像1、2、3、4、5……叫做自然数。一个物体也没有用0表示。自然数的个数是无限的,最小的自然数是0,没有最大的自然数。3、小数
推荐度:
点击下载文档文档为doc格式
2aen06xb8c9sc9l3ppnv1xep036fj7019eg
领取福利

微信扫码领取福利

微信扫码分享