数列求和的三种特殊求法
例1、已知数列{an}的通项公式为an=2n?1+3n,求这个数列的前n项和
例2、求下列数列的前n项和: (1)11,2111124,38,……n?22)1,11n,…… (1?2,1?2?3……1?2?3????n……
(3)5,55,555.……,55……5,……(4)0.5,0.55,0.555,……,0.55……5,……
例3、已知数列的的通项,求数列的前n项和: (1) a1n?n(n?1) (2)b1n?n(n?2)
(3){a12242n}满足an=n?n?1,求Sn (4)求和:Sn?1?3?3?5?……+(2n)2(2n?1)(2n?1)
(5)求和S1n?1?2?3?12?3?4????1n(n?1)(n?2)
例4、求数列a,2a2,3a3,?,nan,?(a为常数)的前n项和Sn。
练习:求和:
12,352n?122,23,……2n,……
知识演练:
1. (2009年广东第4题)已知等比数列{a2nn}满足an?0,n?1,2,?,且a5?a2n?5?2(n?3),
则当n?1时,log2a1?log2a1???log2a2n?1? A.n(2n?1) B.(n?1)2 C.n2
D.(n?1)2
2. (2010年山东第18题)已知等差数列?an?满足:a3?7,a5?a7?26,?an?的前n项和为Sn.
(Ⅰ)求a1*
n及Sn; (Ⅱ)令bn=a2(n?N),求数列?bn?的前n项和Tn.
n?1
3. (2005年湖北第19题)设数列{an}的前n项和为Sn=2n2,{bn}为等比数列,且
a1?b1,b2(a2?a1)?b1.
(Ⅰ)求数列{an}和{bn}的通项公式; (Ⅱ)设cann?b,求数列{cn}的前n项和Tn n
小结:数列求和的方法
分组求和,裂项相消(分式、根式),错位相减(差比数列)
数列求和的思维策略:
从通项入手,寻找数列特点
数列求和裂项法,错位相减法,分组求和法



