广东省深圳市2024-2024学年中考数学模拟试题(2)
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.把抛物线y=﹣2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是( ) A.y=﹣2(x+1)2+1 C.y=﹣2(x﹣1)2﹣1
B.y=﹣2(x﹣1)2+1 D.y=﹣2(x+1)2﹣1
2.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是( ) A.
B.
C.
D.
3.如图1是2024年4月份的日历,现用一长方形在日历表中任意框出4个数(如图2),下列表示a,b,c,d之间关系的式子中不正确的是( )
A.a﹣d=b﹣c B.a+c+2=b+d C.a+b+14=c+d D.a+d=b+c
4.如图所示,某办公大楼正前方有一根高度是15米的旗杆ED,从办公大楼顶端A测得旗杆顶端E的俯角α是45°,旗杆低端D到大楼前梯砍底边的距离DC是20米,梯坎坡长BC是12米,梯坎坡度i=1:3,则大楼AB的高度约为( )(精确到0.1米,参考数据:2?1.41,3?1.73,6?2.45)
A.30.6米 B.32.1 米 C.37.9米 D.39.4米
5.如图,已知AB∥CD,∠1=115°,∠2=65°,则∠C等于( )
A.40° B.45° C.50° D.60°
26.若二次函数y?ax?bx?c?a?0?的图象与x轴有两个交点,坐标分别是(x1,0),(x2,0),且x1?x2.
图象上有一点M?x0,y0?在x轴下方,则下列判断正确的是( ) A.a?0
B.b2?4ac?0
C.x1?x0?x2
D.a?x0?x1??x0?x2??0
7.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是( )
A.CB=CD C.∠BAC=∠DAC
B.∠BCA=∠DCA D.∠B=∠D=90°
8.如图,图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,按此规律,则第(n)个图形中面积为1的正方形的个数为( )
A.
n?n?1? 2B.
n?n?2?2 C.
n?n?3? 2D.
n?n?4?2
9.如图所示是由几个完全相同的小正方体组成的几何体的三视图.若小正方体的体积是1,则这个几何体的体积为( )
A.2 B.3 C.4 D.5
10.如图,在矩形ABCD中,E是AD上一点,沿CE折叠△CDE,点D恰好落在AC的中点F处,若CD=3,则△ACE的面积为( )
A.1
B.3
C.2
D.23
11.如图,正六边形ABCDEF中,P、Q两点分别为△ACF、△CEF的内心.若AF=2,则PQ的长度为何?( )
A.1 B.2
C.23﹣2 D.4﹣23 12.如图是正方体的表面展开图,则与“前”字相对的字是( )
A.认 B.真 C.复 D.习
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,在矩形ABCD中,E是AD上一点,把△ABE沿直线BE翻折,点A正好落在BC边上的点F处,如果四边形CDEF和矩形ABCD相似,那么四边形CDEF和矩形ABCD面积比是__.
14.废旧电池对环境的危害十分巨大,一粒纽扣电池能污染600立方米的水(相当于一个人一生的饮水量).某班有50名学生,如果每名学生一年丢弃一粒纽扣电池,且都没有被回收,那么被该班学生一年丢弃的纽扣电池能污染的水用科学记数法表示为_____立方米. 15.计算:
?5?3??5?3=_________ .
?16.如图,在平面直角坐标系中,二次函数y=ax2+c(a≠0)的图象过正方形ABOC的三个顶点A,B,C,则ac的值是________.
17.如图,直线y=k1x+b与双曲线y=k2k交于A、B两点,其横坐标分别为1和5,则不等式k1x<2xx+b的解集是 ▲ .
18.不透明袋子中装有7个球,其中有2个红球、2个绿球和3个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是黑球的概率是_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)已知,如图,在四边形ABCD中,∠ADB=∠ACB,延长AD、BC相交于点E.求证:△ACE∽△BDE;BE?DC=AB?DE.
3x2?4x?420.÷+2﹣1+4. (6分)先化简,再求值:(﹣x+1),其中x=sin30°
x?1x?121.(6分)为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明. 22.(8分)实践体验:
(1)如图1:四边形ABCD是矩形,试在AD边上找一点P,使△BCP为等腰三角形;
(2)如图2:矩形ABCD中,AB=13,AD=12,点E在AB边上,BE=3,点P是矩形ABCD内或边上一点,且PE=5,点Q是CD边上一点,求PQ得最值; 问题解决:
(3)如图3,四边形ABCD中,AD∥BC,∠C=90°,AD=3,BC=6,DC=4,点E在AB边上,BE=2,点P是四边形ABCD内或边上一点,且PE=2,求四边形PADC面积的最值.
23.(8分)如图1,在菱形ABCD中,AB=65,tan∠ABC=2,点E从点D出发,以每秒1个单位长度的速度沿着射线DA的方向匀速运动,设运动时间为t(秒),将线段CE绕点C顺时针旋转一个角α(α=∠BCD),得到对应线段CF.
(1)求证:BE=DF;
(2)当t= 秒时,DF的长度有最小值,最小值等于 ;
(3)如图2,连接BD、EF、BD交EC、EF于点P、Q,当t为何值时,△EPQ是直角三角形? 24.(10分)计算:|﹣1|+9﹣(1﹣3)0﹣(
1﹣1
). 225.(10分)M中学为创建园林学校,购买了若干桂花树苗,计划把迎宾大道的一侧全部栽上桂花树(两端必须各栽一棵),并且每两棵树的间隔相等,如果每隔5米栽1棵,则树苗缺11棵;如果每隔6米栽1棵,则树苗正好用完,求购买了桂花树苗多少棵?
26.(12分)某科技开发公司研制出一种新型产品,每件产品的成本为2500元,销售单价定为3200元.在该产品的试销期间,为了促销,鼓励商家购买该新型品,公司决定商家一次购买这种新型产品不超过10件时,每件按3200元销售:若一次购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低5元,但销售单价均不低于2800元.商家一次购买这种产品多少件时,销售单价恰好为2800元?设商家一次购买这种产品x件,开发公司所获的利润为y元,求y(元)与x(件)之间的函数关系式,并写出自变量x的取值范围该公司的销售人员发现:当商家一次购买产品的件数超过某一数量时,会出现随着一次购买的数量的增多,公司所获的利润反而减少这一情况.为使商家一次购买的数量越多,公司所获的利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)
27.(12分)如图,AB、CD是⊙O的直径,DF、BE是弦,且DF=BE,求证:∠D=∠B.
参考答案