解答:A
4.下列哪种情况中“挤出效应”可能很大?
A.货币需求对利率敏感,私人部门支出对利率不敏感。
B.货币需求对利率敏感,私人部门支出对利率也敏感。
C.货币需求对利率不敏感,私人部门支出对利率不敏感。
D.货币需求对利率不敏感,私人部门支出对利率敏感。
解答:B
5.“挤出效应”发生于( )。
A.货币供给减少使利率提高,挤出了对利率敏感的私人部门支出;
B.私人部门增税,减少了私人部门的可支配收入和支出;
C.政府支出增加,提高了利率,挤出了对利率敏感的私人部门支出;
D.政府支出减少,引起消费支出下降。
解答:C
6. 假设LM方程为y=500亿美元+25r(货币需求L=0.20y-5r,货币供给为100亿美元)。
(1)计算:1)当IS为y=950亿美元-50r(消费c=40亿美元+0.8yd,投资i=140亿美元-10r,税收t=50亿美元,政府支出g=50亿美元)时和2)当IS为y=800亿美元-25r(消费
c=40亿美元+0.8yd,投资i=110亿美元-5r,税收t=50亿美元,政府支出g=50亿美元)时的均衡收入、利率和投资。
(2)政府支出从50亿美元增加到80亿美元时,情况1)和情况2)中的均衡收入和利率各为多少?
(3)说明政府支出从50亿美元增加到80亿美元时,为什么情况1)和情况2)中收入的增加有所不同。
解答:(1)由IS曲线y=950亿美元-50r和LM曲线y=500亿美元+25r联立求解得,950-50r=500+25r,解得均衡利率为r=6,将r=6代入y=950-50r得均衡收入y=950-50×6=650,将r=6代入i=140-10r得投资为i=140-10×6=80。
同理我们可用同样方法求2):由IS曲线和LM曲线联立求解得,y=500+25r=800-25r,得均衡利率为r=6,将r=6代入y=800-25r=800-25×6=650,代入投资函数得投资为i=110-5r=110-5×6=80。
(2)政府支出从50亿美元增加到80亿美元时,对1)和2)而言,其IS曲线都会发生变化。首先看1)的情况:由y=c+i+g,IS曲线将为y=40+0.8(y-t)+140-10r+80=40+0.8(y-50)+140-10r+80, 化简整理得IS曲线为y=1 100-50r,与LM曲线联立得方程组
y=500+25r))
该方程组的均衡利率为r=8,均衡收入为y=700。同理我们可用相同的方法来求2)的情况:y=c+i+g=40+0.8(y-50)+110-5r+80, 化简整理得新的IS曲线为y=950-25r,与LM曲线y=500+25r联立可解得均衡利率r=9,均衡收入y=725。
(3)收入增加之所以不同,是因为在LM斜率一定的情况下,财政政策效果会受到IS曲线斜率的影响。在1)这种情况下,IS曲线斜率绝对值较小,IS曲线比较平坦,其投资需求对利率变动比较敏感,因此当IS曲线由于支出增加而右移使利率上升时,引起的投资下降也较大,从而国民收入水平提高较少。在2)这种情况下,则正好与1)情况相反,IS曲线比较陡峭,投资对利率不十分敏感,因此当IS曲线由于支出增加而右移使利率上升时,引起的投资下降较少,从而国民收入水平提高较多。
7. 假设货币需求为L=0.20y,货币供给量为200亿美元,c=90亿美元+0.8yd,t=50亿美元,i=140亿美元-5r,g=50亿美元。
(1)导出IS和LM方程,求均衡收入、利率和投资;
(2)若其他情况不变,g增加20亿美元,均衡收入、利率和投资各为多少?
(3)是否存在“挤出效应”?
(4)用草图表示上述情况。
解答:(1)由c=90+0.8yd,t=50,i=140-5r,g=50和y=c+i+g可知IS曲线为
y=90+0.8yd+140-5r+50
=90+0.8(y-50)+140-5r+50
=240+0.8y-5r
化简整理得,均衡收入为
y=1 200-25r(1)
由L=0.20y,MS=200和L=MS可知LM曲线为0.20y=200,即
y=1 000(2)
这说明LM曲线处于充分就业的古典区域,故均衡收入为y=1 000,联立式(1)、式(2)得
1 000=1 200-25r
求得均衡利率r=8,代入投资函数,得
i=140-5r=140-5×8=100
(2)在其他条件不变的情况下,政府支出增加20亿美元将会导致IS曲线发生移动,此时由y=c+i+g可得新的IS曲线为
y=90+0.8yd+140-5r+70
=90+0.8(y-50)+140-5r+70
=260+0.8y-5r
化简整理得,均衡收入为
y=1 300-25r
与LM曲线y=1 000联立得
1 300-25r=1 000
由此均衡利率为r=12,代入投资函数得
i=140-5r=140-5×12=80
而均衡收入仍为y=1 000。
(3)由投资变化可以看出,当政府支出增加时,投资减少相应份额,这说明存在“挤出效应”,由均衡收入不变也可以看出,LM曲线处于古典区域,即LM曲线与横轴y垂直,这说明政府支出增加时,只会提高利率和完全挤占私人投资,而不会增加国民收入,可见这是一种与古典情况相吻合的“完全挤占”。
(4)草图如图15—1。
图15—1
8. 假设货币需求为L=0.20y-10r,货币供给量为200亿美元,c=60亿美元+0.8yd,t=100亿美元,i=150亿美元,g=100亿美元。