35
1.(2024·泰安模拟)设数列{an}的前n项和为Sn,n∈N*.已知a1=1,a2=,a3=,且当n≥2
24时,4Sn+2+5Sn=8Sn+1+Sn-1. (1)求a4的值;
(2)证明:???
a1?
n+1-2an??为等比数列;
(3)求数列{an}的通项公式.
(1)解 当n=2时,4S4+5S2=8S3+S1,
即4??35?1+2+4+a????1+32???=8???1+32+54?+5?4???
+1,
解得a74=8
.
(2)证明 因为4Sn+2+5Sn=8Sn+1+Sn-1(n≥2), 所以4Sn+2-4Sn+1+Sn-Sn-1=4Sn+1-4Sn(n≥2), 即4an+2+an=4an+1 (n≥2),
当n=1时,4a+a5
31=4×4+1=6=4a2,
所以n=1也满足此式, 所以4a*
n+2+an=4an+1 (n∈N), a1n+2-an+1
因为24an+2-2an+1
a1=4a
n+1-2ann+1-2
an=
4an+1-an-2an+12an+4a2a=1-an=1
,
n+1-n2?2an+1-an?2
所以数列???
a1?11
n+1-2an??是以a2-2a1=1为首项,2为公比的等比数列.
(3)解 由(2)知:数列???
a1?11
n+1-2an??是以a2-2a1=1为首项,2为公比的等比数列,
所以a1+1-?1?n-1
n2an=??2??.
即
an+1
?-an=4,
?1???n+12???1?2??n?
11
a??n??a1an所以数列??1?n?是以=2为首项,4为公差的等差数列,所以=2+(n-1)×4=4n-2,
11????n???2????2?2??
?1?n?1?n-1
即an=(4n-2)×??=(2n-1)×??,
?2??2??1?n-1
所以数列{an}的通项公式是an=(2n-1)×??.
?2?
2.(2017·福建漳州八校联考)已知递增的等比数列{an}满足:a2+a3+a4=28,且a3+2是
a2和a4的等差中项.
(1)求数列{an}的通项公式;
(2)若bn=anlog1an,Sn=b1+b2+…+bn,求使Sn+n·2
2n+1
>62成立的正整数n的最小值.
??a1q+a1q+a1q=28,
解 (1)由题意,得?32
??a1q+a1q=2?a1q+2?,??a1=2,
解得?
?q=2?
23
a1=32,??
或?1
q=,??2
n
∵{an}是递增数列,∴a1=2,q=2, ∴数列{an}的通项公式为an=2·2
nn-1
=2.
nn(2)∵bn=anlog1an=2·log12=-n·2,
222
∴Sn=b1+b2+…+bn=-(1×2+2×2+…+n·2),① 则2Sn=-(1×2+2×2+…+n·2
2
2
3
nn+1
),②
n+1
②-①,得Sn=(2+2+…+2)-n·2则Sn+n·2解2
n+1
n+1
n=2
n+1
-2-n·2
n+1
,
=2
n+1
-2,
-2>62,得n>5,
∴n的最小值为6.
3.(2024·梅州质检)已知正项数列{an}中,a1=1,点(an,an+1)(n∈N)在函数y=x+1的图象上,数列{bn}的前n项和Sn=2-bn. (1)求数列{an}和{bn}的通项公式; (2)设cn=
-1
,求{cn}的前n项和Tn.
an+1log2bn+1
*
2
*
2
解 (1)∵点(an,an+1)(n∈N)在函数y=x+1的图象上, ∴an+1=an+1,∴数列{an}是公差为1的等差数列. ∵a1=1,∴an=1+(n-1)×1=n, ∵Sn=2-bn,∴Sn+1=2-bn+1,
12
两式相减,得bn+1=-bn+1+bn,即
bn+11
=, bn2
由S1=2-b1,即b1=2-b1,得b1=1. 1
∴数列{bn}是首项为1,公比为的等比数列,
2
?1?n-1
∴bn=??.
?2?
?1?n(2)∵log2bn+1=log2??=-n,
?2?
∴cn=
111
=-,
n?n+1?nn+1
1?1n?1??11??11??1
∴Tn=c1+c2+…+cn=?1-?+?-?+?-?+…+?-=1-=. ?n+1n+1?2??23??34??nn+1?4.(2024·佛山模拟)在等比数列{an}中,an>0(n∈N),公比q∈(0,1),且a1a5+2a3a5+a2a8=25,又a3与a5的等比中项为2. (1)求数列{an}的通项公式;
(2)设bn=log2an,求数列{bn}的前n项和Sn;
(3)是否存在k∈N,使得++…+ 12n若不存在,请说明理由. 解 (1)∵a1a5+2a3a5+a2a8=25, ∴a3+2a3a5+a5=25,∴(a3+a5)=25, 又an>0,∴a3+a5=5, 又a3与a5的等比中项为2, ∴a3a5=4,而q∈(0,1), ∴a3>a5,∴a3=4,a5=1, 1 ∴q=,a1=16, 2 2 2 2 * * S1S2Sn* ?1?n-15-n∴an=16×??=2. ?2? (2)∵bn=log2an=5-n, ∴bn+1-bn=-1, b1=log2a1=log216=log224=4, ∴{bn}是以b1=4为首项,-1为公差的等差数列, ∴Sn= n?9-n? 2 . 13 (3)由(2)知Sn= n?9-n? 2Sn9-n,∴=. n2 Snn当n≤8时,>0;当n=9时,=0; 当n>9时,<0. ∴当n=8或n=9时,+++…+=18最大. 123n故存在k∈N,使得++…+ SnnSnnS1S2S3SnS1S2Sn* 5.(2017·天津滨海新区八校联考)已知数列{an},{bn},Sn为数列{an}的前n项和,a2=4b1, Sn=2an-2,nbn+1-(n+1)bn=n2+n(n∈N*). (1)求数列{an}的通项公式; (2)证明:??为等差数列; ?n??bn? ab-??2,n为奇数, (3)若数列{c}的通项公式为c=?ab??4,n为偶数. nnnnnn 令Tn为{cn}的前n项和,求T2n. ??Sn=2an-2, (1)解 当n>1时,? ?Sn-1=2an-1-2,? 则an=2an-2an-1, an=2. an-1 当n=1时,S1=2a1-2,得a1=2, 综上,{an}是公比为2,首项为2的等比数列,an=2. (2)证明 ∵a2=4b1,∴b1=1. ∵nbn+1-(n+1)bn=n+n, ∴ 2 nbn+1bn-=1, n+1n?bn??n? 综上,??是公差为1,首项为1的等差数列, bn2=1+n-1,可得bn=n. n(3)解 令pn=c2n-1+c2n 14 ?2n-1?·2=- 2=(4n-1)·2 0 22n-1 ?2n?·2+ 4 n-1 22n2n-2 =(4n-1)·4 1 2 . n-1 T2n=3·4+7·4+11·4+…+?4n-1?·4,①??123n-1?4T2n=3·4+7·4+11·4+…+?4n-5?·4?? +?4n-1?·4n ② ①-②,得-3T2n=3·4+4·4+4·4+…+4·416-16·4∴-3T2n=3+ 1-4712n-7n∴T2n=+·4. 99 n-10 1 2 n-1 -(4n-1)·4, n-(4n-1)·4 n 1* 6.已知数列{an},{bn},其中,a1=,数列{an}满足(n+1)an=(n-1)an-1 (n≥2,n∈N), 2数列{bn}满足b1=2,bn+1=2bn. (1)求数列{an},{bn}的通项公式; 111m-8* (2)是否存在自然数m,使得对于任意n∈N,n≥2,有1+++…+<恒成立?若存 b1b2bn4在,求出m的最小值; 1??,n为奇数, (3)若数列{cn}满足cn=?nan??bn,n为偶数,解 (1)由(n+1)an=(n-1)an-1, 即 求数列{cn}的前n项和Tn. ann-1 =(n≥2). an-1n+1 1又a1=, 2所以an=== anan-1an-2a3a2 ···…···a1 an-1an-2an-3a2a1 n-1n-2n-3211···…··· n+1nn-1432 1 . n?n+1? 1 . n?n+1? 当n=1时,上式成立,故an=因为b1=2,bn+1=2bn, 所以{bn}是首项为2,公比为2的等比数列, 15