好文档 - 专业文书写作范文服务资料分享网站

八年级数学上册第13章《线段的垂直平分线的性质》教学设计(人教版)

天下 分享 时间: 加入收藏 我要投稿 点赞

13.1.2 线段垂直平分线的性质

【教学目标】

1.知识与技能

(1)掌握线段垂直平分线的性质和判定.

(2)能运用线段垂直平分线的性质和判定解决实际问题. 2.过程与方法

探究线段垂直平分线的性质,培养学生认真探究、积极思考的能力. 3.情感态度和价值观

在探究的过程中,更大程度的激发学生学习的主动性和积极性,并使学生具有一些初步研究问题的能力. 【教学重点】

线段垂直平分线的性质 【教学难点】

线段垂直平分的性质的运用 【教学方法】

自学与小组合作学习相结合的方法 【课前准备】

教学课件. 【课时安排】

1课时 【教学过程】

一、复习导入

展示垂直平分线的图片.

【过渡】上节课我们学习了轴对称,在最后了解了垂直平分线的概念,那么垂直平分线到底有什么性质呢?今天我们就来探究一下.

二、新课教学

1.线段的垂直平分线的性质

【过渡】现在,请同学们自己在纸上按照课本图13.1-6画一条横线和其垂直平分线,然后选取不同的点,判断到AB两点的距离是否相等.如果将纸对折,点会重合吗?

学生进行探究,并请同学回答. 猜想结论:距离相等且重合. 通过动手去验证结论是否正确.

最终得到结论.

【结论】线段垂直平分线上的点与这条线段两个端点的距离相等. 【过渡】有同学可以用理论证明一下这个结论呢? 利用判定两个三角形全等. 如图,在△APC和△BPC中,

?△APC≌△BPC?PA=PB

【过渡】如果把我们刚刚得到的结论反过来,即PA=PB时,P是否位于线段垂直平分线上呢? 学生动手,验证结论. 用数学法证明结论.

【结论】与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.

上述两个探究问题的结果就给出了线段垂直平分线的性质,即:线段垂直平分线上的点与这条线段两个端点的距离相等;反过来,与这条线段两个端点距离相等的点都在它的垂直平分线上.所以线段的垂直平分线可以看成是与线段两端点距离相等的所有点的集合.

2.线段垂直平分线的尺规作图 按照课本例题,进行讲解.

【过渡】对于尺规作图,我们需要掌握的是所用的原理即为垂直平分线的性质,现在,大家来试一下解决实际问题吧.

【练习】如图,A、B、C是新建的三个居民小区,政府已在与三个居民小区距离相等的地方修建了一所学校,要求学校到三个小区的距离相等,请在图中作出学校的位置M.

【过渡】我们将实际问题转化为数学问题,就会发现,我们将三个小区看作A、B、C三个点,而连接AB,BC,分别作出AB,BC的垂直平分线交点即为所求.

【知识巩固】

1、如图,△ABC中,D、E两点分别在AC、BC上,DE为BC的中垂线,BD为∠ADE的角平分线.若∠A=58°,则∠ABD的度数为何?( D )

A.58

B.59

C.61

D.62

2、如图,五边形ABCDE中,BC=DE,AE=DC,DM是AB的垂直平分线.证明:∠E=∠C.

解:证明:如图,连接AD、BD

∵DM是AB的垂直平分线(已知),

∴AD=BD(线段垂直平分线上的点到线段两端的距离相等). 在△ADE与△DBC中,BC=DE,AE=DC,AD=BD, ∴△ADE≌△DBC(SSS),

∴∠E=∠C(全等三角形的对应角相等)

3、在△ABC中,AB=AC,AB边的中垂线交AC于D,交AB于E (1)请画出图形,指出图中所有相等的线段,并说明理由;

(2)若△ABC的周长为16,△BCD的周长为10,求△ABC的三边长. 解:(1)∵DE是AB边的中垂线, ∴DA=DB,AE=BE;

(2)△BCD的周长=BC+CD+DB=BC+AC=10, △ABC的周长=BC+AC+AB=16, ∴AB=6,

则AC=AB=6,BC=4.

4、利用尺规作三角形的三条边的垂直平分线,观察这三条垂直平分线的位置关系,你发现了什么?再换一个三角形试一试.

八年级数学上册第13章《线段的垂直平分线的性质》教学设计(人教版)

13.1.2线段垂直平分线的性质【教学目标】1.知识与技能(1)掌握线段垂直平分线的性质和判定.(2)能运用线段垂直平分线的性质和判定解决实际问题.2.过程与方法探究线段垂直平分线的性质,培养学生认真探究、积极思考的能力.3.情感态度和价值观在探究的过程中,更大程度的激发学生学习的主动性和
推荐度:
点击下载文档文档为doc格式
28yye0sc3j3ef8l940oa3cwgi893aj006gq
领取福利

微信扫码领取福利

微信扫码分享