6、同位角、内错角、同旁内角基本特征:
c a ①在两条直线(被截线)的 同一方 ,都在第三条直线(截线)的 同一侧 ,这样
2 3 1 4 b 的两个角叫 同位角 。图3中,共有 对同位角: 与 是同位角; 与 是同位角; 与 是同位角; 与 是同位角。
6 7 8 5
图3
②在两条直线(被截线) 之间 ,并且在第三条直线(截线)的 两侧 ,这样的两个角叫 内错角 。图3中,共有 对内错角: 与 是内错角; 与 是内错角。
③在两条直线(被截线)的 之间 ,都在第三条直线(截线)的 同一旁 ,这样的两个角叫 同旁内角 。图3中,共有 对同旁内角: 与 是同旁内角; 与 是同旁内角。 7、平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。 平行线的性质:
性质1:两直线平行,同位角相等。如图4所示,如果a∥b, 则 = ; = ; = ; = 。
c a 2 3 1 4 b 图4
6 7 5 8 性质2:两直线平行,内错角相等。如图4所示,如果a∥b,则 = ; = 。 性质3:两直线平行,同旁内角互补。如图4所示,如果a∥b,则 + = 180°; + = 180°。
性质4:平行于同一条直线的两条直线互相平行。如果a∥b,a∥c,则 ∥ 。 8、平行线的判定:
c 2 3 4 1 b 图5
a 判定1:同位角相等,两直线平行。如图5所示,如果 = 6 7 8 5 或 = 或 = 或 = ,则a∥b。 判定2:内错角相等,两直线平行。如图5所示,如果 = 或 = ,则a∥b 。 判定3:同旁内角互补,两直线平行。如图5所示,如果 + = 180°; + = 180°,则a∥b。
判定4:平行于同一条直线的两条直线互相平行。如果a∥b,a∥c,则 ∥ 。
9、判断一件事情的语句叫命题。命题由 题设 和 结论 两部分组成,有 真命题 和 假命题 之分。如果题设成立,那么结论 一定 成立,这样的命题叫 真命题 ;如果题设成立,那么结论 不一定 成立,这样的命题叫假命题。真命题的正确性是经过推理证实的,这样的真命题叫定理,它可以作为继续推理的依据。
10、平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移变换,简称平移。 平移后,新图形与原图形的 形状 和 大小 完全相同。平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
2 / 14