第五章 数理统计的基础知识
5.1 数理统计的基本概念
习题1
已知总体X服从[0,λ]上的均匀分布(λ未知), X1,X2,?,Xn为X的样本,则().
(A)1n∑i=1nXi-λ2是一个统计量; (B)1n∑i=1nXi-E(X)是一个统计量; (C)X1+X2是一个统计量; (D)1n∑i=1nXi2-D(X)是一个统计量.
解答: 应选(C).
由统计量的定义:样本的任一不含总体分布未知参数的函数称为该样本的统计量.(A)(B)(D)中均含未知参数.
习题2
观察一个连续型随机变量,抽到100株“豫农一号”玉米的穗位(单位:cm), 得到如下表中所列的数据. 按区间[70,80),[80,90),?,[150,160), 将100个数据分成9个组,列出分组数据计表(包括频率和累积频率), 并画出频率累积的直方图. 解答: 分组数据统计表
组序号 1 组限 组中值 组频率 组频率% 累计频率% 组序号 组限 组中值 组频率 组频率% 累计频率% 6 7 8 9 2 3 4 5 70~80~90~100~110~120115262667 8075333 90859912 10095131325 110105161661 120~130125202487 130~1401357794 140~1501454498 150~16015522100 频率直方图见图(a),累积频率直方图见图(b). 习题3 测得20个毛坯重量(单位:g),列成如下简表: 毛坯重量 185187192195200202405206 频数 11111211
毛坯重量 207208210214215216218227 频数 21112121 将其按区间[183.5,192.5),?,[219.5,228.5)组,列出分组统计表,并画出频率直方图. 解答: 分组统计表见表 组序号 组限 组中值 组频数 组频率/% 12345 183.5,~192.5192.5,~201.5201.5,~210.5210.5,~219.5219.5,~228.518819720621522432861151040305 频率直方图见下图 习题4 某地区抽样调查200个居民户的月人均收入,得如下统计资料: 月人均收入(百元) 5-66-77-88-99-1010-1111-12 合计 户数 18357624191414 200 求样本容量n,样本均值Xˉ,样本方差S2. 解答: 对于抽到的每个居民户调查均收入,可见n=200. 这里,没有给出原始数据,而是给出了整理过的资料(频率分布), 我们首先计算各组的“组中值”,然后计算Xˉ和S2的近似值: 月人均收入(百元) 5-66-77-88-99-1010-1111-12 合计 组中值ak 户数fk 5.56.57.58.59.510.511.5 18357624191414 - 200 Xˉ=1n∑kakfk=1200(5.5×18+?+11.5×14)=7.945, S2≈1n-1∑k(ak-Xˉ)2fk=1n-1∑kak2fk-Xˉ2 =1199(5.52×18+?+11.52×14)-7.9452 ≈66.0402-63.123025=2.917175. 习题5 设总体X服从二项分布B(10,3100),X1,X2,?,Xn为来自总体的简单随机样本, Xˉ=1n∑i=1nXi与Sn2=1n∑i=1n(Xi-Xˉ)2 分别表示样本均值和样本二阶中心矩,试求E(Xˉ),E(S2).
解答:
由X~B(10,3100), 得
E(X)=10×3100=310,D(X)=10×3100×97100=2911000,
所以
E(Xˉ)=E(X)=310,E(S2)=n-1nD(X)=291(n-1)1000n.
习题6
设某商店100天销售电视机的情况有如下统计资料
日售出台数k 2 天数fk 3 4 5 6 合计 20 30 10 25 15 100 求样本容量n,经验分布函数Fn(x). 解答: (1)样本容量n=100; (2)经验分布函数 Fn(x)={0,x<20.20,2≤x<30.50,3≤x<40.60,4≤x<50.85,5≤x<61,x≥6. 习题7 设总体X的分布函数为F(x), 概率密度为f(x),X1,X2,?,Xn为来自总体X的一个样本,记 X(1)=min1≤i≤n(Xi),X(n)=max1≤i≤n(Xi), 试求X(1)和X(n) 各自的分布函数和概率密度. 解答: 设X(1)的分布函数和概率密度分别为F1(x)和f1(x), X(n)的分布函数和概率密度分别为Fn(x)和fn(x), 则 Fn(X)=P{X(n)≤x}=P{X1≤x,?,X(n)≤x} =P{X1≤x}P{X2≤x}?P{Xn≤x}=[F(x)]n, fn(x)=F′n(x)=n[F(x)]n-1f(x), F1(x)=P{X(1)≤x}=1-P{X(1)>x}=1-P{X1>x,X2>x,?,Xn>x} =1-P{X1>x}P{X2>x}?P{Xn>x} =1-[1-P{X1≤x}][1-P{X2≤x}]?[1-P{Xn≤x}] =1-[1-F(x)]n, F′1(x)=f1(x)=n[1-F(x)]n-1f(x). 习题8 设总体X服从指数分布e(λ),X1,X2是容量为2的样本,求X(1),X(2)的概率密度. 解答: f(x)={λe-λx,x>00,其它, F(x)={1-e-λx,x>00,x≥0, X(2)的概率密度为
f(2)(x)=2F(x)f(x)={2λe-λx(1-e-λx),x>00,其它,
又X(1)的概率密度为
f(1)(x)=2[1-F(x)]f(x)={2λe-2λx,x>00,其它.
习题9
设电子元件的寿命时间X(单位:h)服从参数λ=0.0015的指数分布,今独立测试n=6元件,记录它们的失效时间,求:
(1)没有元件在800h之前失效的概率; (2)没有元件最后超过3000h的概率.
解答:
(1)总体X的概率密度f(x)={(0.0015)e-0.0015x,x>00,其它,
分布函数F(x)={1-e-0.0015x,x>00,其它,
{没有元件在800h前失效}={最小顺序统计量X(1)>800}, 有
P{X(1)>800}=[P{X>800}]6=[1-F(800)]6
=exp(-0.0015×800×6)=exp(-7.2)≈0.000747.
(2){没有元件最后超过3000h}={最大顺序统计量X(6)<3000}
P{X(6)<3000}=[P{X<3000}]6=[F(3000)]6 =[1-exp{-0.0015×3000}]6=[1-exp{-4.5}]6 ≈0.93517.
习题10
设总体X任意,期望为μ,方差为σ2, 若至少要以95%的概率保证∣Xˉ-μ∣<0.1σ, 问样本容量n应取多大? 解答:
因当n很大时,Xˉ-N(μ,σ2n), 于是
P{∣Xˉ-μ∣<0.1σ}=P{μ-0.1σ ≈Φ(0.1σσ/n)-Φ(-0.1σσ/n)=2Φ(0.1n)-1≥0.95, 则Φ(0.1n)≥0.975, 查表得Φ(1.96)=0.975, 因Φ(x)非减,故0.1n≥1.96,n≥384.16, 故样本容量至少取385才能满足要求. 5.2 常用统计分布 习题1