好文档 - 专业文书写作范文服务资料分享网站

分解因式全部方法 

天下 分享 时间: 加入收藏 我要投稿 点赞

分解因式全部方法

因式分解没有普遍的方法,初中数学教材中主要介绍了提公因式法、公式法。而在竞赛上,又有拆项和添减项法,分组分解法和十字相乘法,待定系数法,双十字相乘法,对称多项式轮换对称多项式法,余数定理法,求根公式法,换元法,长除法,除法等。 注意三原则 1 分解要彻底

2 最后结果只有小括号

3 最后结果中多项式首项系数为正(例如:-3x^2+x=-x(3x-1)) [编辑本段] 基本方法

⑴提公因式法

各项都含有的公共的因式叫做这个多项式各项的公因式。 如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。 具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。

如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。提出“-”号时,多项式的各项都要变号。

口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶。

例如:-am+bm+cm=-m(a-b-c);

a(x-y)+b(y-x)=a(x-y)-b(x-y)=(x-y)(a-b)。

注意:把2a^2+1/2变成2(a^2+1/4)不叫提公因式

⑵公式法

如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法。 平方差公式:a^2-b^2=(a+b)(a-b);

完全平方公式:a^2±2ab+b^2=(a±b)^2; 注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍。 立方和公式:a^3+b^3=(a+b)(a^2-ab+b^2); 立方差公式:a^3-b^3=(a-b)(a^2+ab+b^2);

完全立方公式:a^3±3a^2b+3ab^2±b^3=(a±b)^3.

公式:a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)

1

例如:a^2 +4ab+4b^2 =(a+2b)^2。 (3)分解因式技巧

1.分解因式与整式乘法是互为逆变形。 2.分解因式技巧掌握:

①等式左边必须是多项式;

②分解因式的结果必须是以乘积的形式表示;

③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数; ④分解因式必须分解到每个多项式因式都不能再分解为止。

注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。

3.提公因式法基本步骤: (1)找出公因式;

(2)提公因式并确定另一个因式:

①第一步找公因式可按照确定公因式的方法先确定系数在确定字母; ②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;

③提完公因式后,另一因式的项数与原多项式的项数相同。 [编辑本段]

竞赛用到的方法

⑶分组分解法

分组分解是解方程的一种简洁的方法,我们来学习这个知识。 能分组分解的方程有四项或大于四项,一般的分组分解有两种形式:二二分法,三一分法。 比如:

ax+ay+bx+by =a(x+y)+b(x+y) =(a+b)(x+y)

我们把ax和ay分一组,bx和by分一组,利用乘法分配律,两两相配,立即解除了困难。

同样,这道题也可以这样做。 ax+ay+bx+by =x(a+b)+y(a+b) =(a+b)(x+y) 几道例题:

1. 5ax+5bx+3ay+3by 解法:=5x(a+b)+3y(a+b) =(5x+3y)(a+b)

说明:系数不一样一样可以做分组分解,和上面一样,把5ax和5bx看成整体,把3ay和3by看成一个整体,利用乘法分配律轻松解出。

2

2. x^3-x^2+x-1

解法:=(x^3-x^2)+(x-1) =x^2(x-1)+ (x-1) =(x-1)(x2+1)

利用二二分法,提公因式法提出x2,然后相合轻松解决。 3. x2-x-y2-y

解法:=(x2-y2)-(x+y) =(x+y)(x-y)-(x+y) =(x+y)(x-y-1)

利用二二分法,再利用公式法a2-b2=(a+b)(a-b),然后相合解决。

⑷十字相乘法

这种方法有两种情况。

①x^2+(p+q)x+pq型的式子的因式分解

这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和。因此,可以直接将某些二次项的系数是1的二次三项式因式分解:x^2+(p+q)x+pq=(x+p)(x+q) . ②kx^2+mx+n型的式子的因式分解

如果有k=ac,n=bd,且有ad+bc=m时,那么kx^2+mx+n=(ax+b)(cx+d). 图示如下: × c d

例如:因为 1 -3 × 7 2

-3×7=-21,1×2=2,且2-21=-19, 所以7x^2-19x-6=(7x+2)(x-3).

十字相乘法口诀:首尾分解,交叉相乘,求和凑中

⑸拆项、添项法

这种方法指把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解。要注意,必须在与原多项式相等的原则下进行变形。 例如:bc(b+c)+ca(c-a)-ab(a+b) =bc(c-a+a+b)+ca(c-a)-ab(a+b) =bc(c-a)+bc(a+b)+ca(c-a)-ab(a+b) =bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =(bc+ca)(c-a)+(bc-ab)(a+b)

3

=c(c-a)(b+a)+b(a+b)(c-a) =(c+b)(c-a)(a+b).

⑹配方法

对于某些不能利用公式法的多项式,可以将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解,这种方法叫配方法。属于拆项、补项法的一种特殊情况。也要注意必须在与原多项式相等的原则下进行变形。 例如:x2+3x-40 =x2+3x+2.25-42.25 =(x+1.5)2-(6.5)2 =(x+8)(x-5).

⑺应用因式定理

对于多项式f(x)=0,如果f(a)=0,那么f(x)必含有因式x-a. 例如:f(x)=x2+5x+6,f(-2)=0,则可确定x+2是x2+5x+6的一个因式。(事实上,x2+5x+6=(x+2)(x+3).)

注意:1、对于系数全部是整数的多项式,若X=q/p(p,q为互质整数时)该多项式值为零,则q为常数项约数,p最高次项系数约数;

2、对于多项式f(a)=0,b为最高次项系数,c为常数项,则有a为c/b约数

⑻换元法

有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来,这种方法叫做换元法。

注意:换元后勿忘还元. 例如在分解(x2+x+1)(x2+x+2)-12时,可以令y=x2+x,则 原式=(y+1)(y+2)-12 =y2+3y+2-12=y2+3y-10 =(y+5)(y-2) =(x2+x+5)(x2+x-2) =(x2+x+5)(x+2)(x-1). 也可以参看右图。

⑼求根法

4

令多项式f(x)=0,求出其根为x1,x2,x3,……xn,则该多项式可分解为f(x)=(x-x1)(x-x2)(x-x3)……(x-xn) .

例如在分解2x^4+7x^3-2x^2-13x+6时,令2x^4 +7x^3-2x^2-13x+6=0, 则通过综合除法可知,该方程的根为0.5 ,-3,-2,1. 所以2x^4+7x^3-2x^2-13x+6=(2x-1)(x+3)(x+2)(x-1).

⑽图象法

令y=f(x),做出函数y=f(x)的图象,找到函数图像与X轴的交点x1 ,x2 ,x3 ,……xn ,则多项式可因式分解为f(x)= f(x)=(x-x1)(x-x2)(x-x3)……(x-xn).

与方法⑼相比,能避开解方程的繁琐,但是不够准确。

例如在分解x^3 +2x^2-5x-6时,可以令y=x^3; +2x^2 -5x-6. 作出其图像,与x轴交点为-3,-1,2 则x^3+2x^2-5x-6=(x+1)(x+3)(x-2).

⑾主元法

先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。

⑿特殊值法

将2或10代入x,求出数p,将数p分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式。

例如在分解x^3+9x^2+23x+15时,令x=2,则 x^3 +9x^2+23x+15=8+36+46+15=105,

将105分解成3个质因数的积,即105=3×5×7 .

注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值,

则x^3+9x^2+23x+15可能等于(x+1)(x+3)(x+5),验证后的确如此。

⒀待定系数法

首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。

5

分解因式全部方法 

分解因式全部方法因式分解没有普遍的方法,初中数学教材中主要介绍了提公因式法、公式法。而在竞赛上,又有拆项和添减项法,分组分解法和十字相乘法,待定系数法,双十字相乘法,对称多项式轮换对称多项式法,余数定理法,求根公式法,换元法,长除法,除法等。注意三原则1分解要彻底2最后结果只有小括号3最后结果中多项式首
推荐度:
点击下载文档文档为doc格式
27frq5lqtt47ty70k28s
领取福利

微信扫码领取福利

微信扫码分享