. . .
转弯时不侧向打滑,所需向心力只能由路面与轮胎间的静摩擦力提供,能够提供的最大向心力应为μFN.由此可算得汽车转弯的最大速率应为v=
μRg.因此只要汽车转弯时的实际速率不大于此值,均能保证不侧向打滑.应
选(C).
2 -4 一物体沿固定圆弧形光滑轨道由静止下滑,在下滑过程中,则( )
(A) 它的加速度方向永远指向圆心,其速率保持不变 (B) 它受到的轨道的作用力的大小不断增加 (C) 它受到的合外力大小变化,方向永远指向圆心 (D) 它受到的合外力大小不变,其速率不断增加
分析与解 由图可知,物体在下滑过程中受到大小和方向不变的重力以及时刻指向圆轨道中心的轨道支持力FN作用,其合外力方向并非指向圆心,其大小和方向均与物体所在位置有关.重力的切向分量(m gcos θ) 使物体的速率将会不断增加(由机械能守恒亦可判断),则物体作圆周运动的向心力(又称法向力)将不断增大,由轨道法向方向上的动力学方程
v2FN?mgsinθ?m可判断,随θ 角的不断增大过程,轨道支持力FN也将
R不断增大,由此可见应选(B).
2 -5 图(a)示系统置于以a =1/4 g 的加速度上升的升降机,A、B 两物体质量相同均为m,A 所在的桌面是水平的,绳子和定滑轮质量均不计,若忽略滑轮轴上和桌面上的摩擦,并不计空气阻力,则绳中力为( )
(A) 58 mg (B) 12 mg (C) mg (D) 2mg
分析与解 本题可考虑对A、B 两物体加上惯性力后,以电梯这个非惯性
.. ..
. . .
参考系进行求解.此时A、B 两物体受力情况如图(b)所示,图中a′为A、B 两物体相对电梯的加速度,ma′为惯性力.对A、B 两物体应用牛顿第二定律,可解得FT =5/8 mg.故选(A).
讨论 对于习题2 -5 这种类型的物理问题,往往从非惯性参考系(本题为电梯)观察到的运动图像较为明确,但由于牛顿定律只适用于惯性参考系,故从非惯性参考系求解力学问题时,必须对物体加上一个虚拟的惯性力.如以地面为惯性参考系求解,则两物体的加速度aA 和aB 均应对地而言,本题中
aA 和aB的大小与方向均不相同.其中aA 应斜向上.对aA 、aB 、a 和a′之
间还要用到相对运动规律,求解过程较繁.有兴趣的读者不妨自己尝试一下.
2 -6 图示一斜面,倾角为α,底边AB 长为l =2.1 m,质量为m 的物体从题2 -6 图斜面顶端由静止开始向下滑动,斜面的摩擦因数为μ=0.14.试问,当α为何值时,物体在斜面上下滑的时间最短? 其数值为多少?
.. ..
. . .
分析 动力学问题一般分为两类:(1) 已知物体受力求其运动情况;(2) 已知物体的运动情况来分析其所受的力.当然,在一个具体题目中,这两类问题并无截然的界限,且都是以加速度作为中介,把动力学方程和运动学规律联系起来.本题关键在列出动力学和运动学方程后,解出倾角与时间的函数关系α=f(t),然后运用对t 求极值的方法即可得出数值来.
解 取沿斜面为坐标轴Ox,原点O 位于斜面顶点,则由牛顿第二定律有
mgsinα?mgμcosα?ma (1)
又物体在斜面上作匀变速直线运动,故有
l11?at2?g?sinα?μcosα?t2 cosα22则 t?2l (2)
gcosα?sinα?μcosα?为使下滑的时间最短,可令
dt?0,由式(2)有 dα?sinα?sinα?μcosα??cosα?cosα?μsinα??0
1o,??49 μ则可得 tan2α??此时 t?2l?0.99s
gcosα?sinα?μcosα?.. ..
. . .
2 -7 工地上有一吊车,将甲、乙两块混凝土预制板吊起送至高空.甲块质量为m1 =2.00 ×10kg,乙块质量为m2 =1.00 ×10kg.设吊车、框架和钢丝绳的质量不计.试求下述两种情况下,钢丝绳所受的力以及乙块对甲块的作用力:(1) 两物块以10.0 m·s 的加速度上升;(2) 两物块以1.0 m·s 的加速度上升.从本题的结果,你能体会到起吊重物时必须缓慢加速的道理吗?
-2
-2
2
2
分析 预制板、吊车框架、钢丝等可视为一组物体.处理动力学问题通常采用“隔离体”的方法,分析物体所受的各种作用力,在所选定的惯性系中列出它们各自的动力学方程.根据连接体中物体的多少可列出相应数目的方程式.结合各物体之间的相互作用和联系,可解决物体的运动或相互作用力.
解 按题意,可分别取吊车(含甲、乙)和乙作为隔离体,画示力图,并取竖直向上为Oy 轴正方向(如图所示).当框架以加速度a 上升时,有
FT -(m1 +m2 )g =(m1 +m2 )a (1)
FN2 - m2 g =m2 a (2)
解上述方程,得
FT =(m1 +m2 )(g +a) (3)
FN2 =m2 (g +a) (4)
(1) 当整个装置以加速度a =10 m·s 上升时,由式(3)可得绳所受力的值为
-2
FT =5.94 ×103 N
乙对甲的作用力为
F′N2 =-FN2 =-m2 (g +a) =-1.98 ×103 N (2) 当整个装置以加速度a =1 m·s 上升时,得绳力的值为
.. ..
-2
. . .
FT =3.24 ×103 N
此时,乙对甲的作用力则为
F′N2 =-1.08 ×103 N
由上述计算可见,在起吊相同重量的物体时,由于起吊加速度不同,绳中所受力也不同,加速度大,绳中力也大.因此,起吊重物时必须缓慢加速,以确保起吊过程的安全.
2 -8 如图(a)所示,已知两物体A、B 的质量均为m =3.0kg 物体A 以加速度a =1.0 m·s 运动,求物体B 与桌面间的摩擦力.(滑轮与连接绳的质量不计)
分析 该题为连接体问题,同样可用隔离体法求解.分析时应注意到绳中力大小处处相等是有条件的,即必须在绳的质量和伸长可忽略、滑轮与绳之间的摩擦不计的前提下成立.同时也要注意到力方向是不同的.
解 分别对物体和滑轮作受力分析[图(b)].由牛顿定律分别对物体A、B 及滑轮列动力学方程,有
-2
mA g -FT =mA a (1) F′T1 -Ff =mB a′ (2) F′T -2FT1 =0 (3)
考虑到mA =mB =m, FT =F′T , FT1 =F′T1 ,a′=2a,可联立解得物体与桌面的摩擦力
Ff?mg??m?4m?a?7.2N 2.. ..