好文档 - 专业文书写作范文服务资料分享网站

(word完整版)北师大七年级数学上一元一次方程应用题分类总结

天下 分享 时间: 加入收藏 我要投稿 点赞

列一元一次方程解应用题的类型及练习 列一元一次方程解应用题的一般步骤: (1)审题:弄清题意.

(2)找出等量关系:找出能够表示本题含义的相等关系.

(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,?然后利用已找出的等量关系列出方程.

(4)解方程:解所列的方程,求出未知数的值.

(5)检验,写答案:检验所求出的未知数的值是否是方程的解,?是否符合实际,检验后写出答案.

(1)和、差、倍、分问题

此问题中常用“多、少、大、小、几分之几”或“增加、减少、缩小”等等词语体现等量关系。审题时要抓住关键词,确定标准量与比校量,并注意每个词的细微差别。

例:把一些图书分给某班学生阅读,如果每人分3本,则 剩余20本;如果每人分4本,则还缺25本.问这个班有多少学生?

变式1:某水利工地派48人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应怎样安排人员,正好能使挖出的土及时运走?

变式2:某校组织师生春游,如果只租用45座客车,刚好坐满;如果只租用60座客车,可少租一辆,且余30个座位.请问参加春游的师生共有多少人?

(2)等积变形问题

此类问题的关键在“等积”上,是等量关系的所在,必须掌握常见几何图形的面积、体积公式。“等积变形”是以形状改变而体积不变为前提。常用等量关系为: ①形状面积变了,周长没变;②原体积=变形体积。

例:要锻造一个半径为5cm,高为8cm的圆柱形毛坯,应截取截面半径为4cm的圆钢多长?

变式1:直径为30 cm,高为50cm的圆柱形瓶里放满了饮料,现把饮料倒入底面直径为10cm 的圆柱形小杯,刚好倒满30杯,求小杯的高

变式2:用一根长为10米的铁丝围成一个长方形,(1)使得长方形的长比宽多1.4米,此时长方形的长、宽各为多少米?(2)使得长方形的长比宽多0.8米,此时长方形的长、宽各为多少米?它所围成的长方形与(1)中所围长方形相比,面积有什么变化?

(3)日历问题

日历上数字的规律:上下相差7,左右相差1

例:(1)在一份日历中,任意框出一个竖列上相邻的四个数,观察他们之间是什么关系?如果框出的四个数的和为58,这四天分别是几号?

(2)如果用一个正方形所圈出的4个数的和为76,这四天分别是几号?

变式1:在某张月历中, 一个竖列上相邻的四个数的和是50,求出这四个数.

变式2:小彬假期外出旅行一周,这一周各天的日期之和是84,小彬几号回家?

变式3:爷爷的生日那天的上、下、左、右4个日期的和为80, 你能说出爷爷的生日是几号吗?

(4)数字问题。

要正确区分“数”与“数字”两个概念,这类问题通常采用间接设法,常见的解题思路分析是抓住数字间或新数、原数之间的关系寻找等量关系。列方程的前提还必须正确地表示多位数的代数式,一个多位数是各位上数字与该位计数单位的积之和。 例1:有一列数,按一定规律排列成1,-3,9,-27,81,-243,···。其中某三个相邻数的和是-1701,这三个数各是多少?

例2:三个连续奇数的和是327,求这三个奇数。

变式1:三个连续偶数的和是516,求这三个偶数。

变式2:如果某三个数的比为2:4:5,这三个数的和为143,求这三个数为多少?

变式3:已知三个连续奇数的和比它们相间的两个偶数的和多15,求这三个连续奇数。

例:一个两位数,十位上的数字与个位上的数字之和是7,如果把这个两位数加上45,那么恰好成为个位上数字与十位上数字对调后组成的两位数,试求这个两位数。

变式1:一个两位数,十位数字比个位数字大1,十位数字与个位数字之和是这个两位数的1/6,求这个两位数。

变式2:一个三位数,三个数位上的数字和是15,百位上的数比十位上的数多5,个位上的数字是十位上的数字的3倍,求这个三位数。

(5)年龄问题

其基本数量关系: 大小两个年龄差不会变。

这类问题主要寻找的等量关系是:抓住年龄增长,一年一岁,人人平等。

例:父子二人今年年龄之和为40岁,已知两年前父亲年龄是儿子的8倍,那么两年前父子二人各几岁?

变式1:王丹同学今年12岁,她爸爸今年36岁,几年后爸爸的年龄是王丹年龄的2倍?

变式2:孙子问爷爷多少岁,爷爷说我像你这么大时你才2岁,你长我这么大时,我就128岁了,求爷爷今年多少岁?

(6)调配问题。

从调配后的数量关系中找等量关系,常见是“和、差、倍、分”关系,要注意调配对象流动的方向和数量。常见题型有:

①既有调入又有调出;②只有调入没有调出,调入部分变化,其余不变;③只有调出没有调入,调出部分变化,其余不变。

例:甲、乙两个仓库要向A、B两地运送水泥,已知甲仓库可调100吨水泥乙仓库可调水泥80吨,A地需70吨水泥,B地需 110吨水泥,两仓库到A,B两地的路程和运费如下表 路程(千米) 运费(元/千米.吨) 甲仓库 乙仓库 甲仓库 乙仓库 A地 20 25 12 12 B地 25 20 10 8

(1)设甲仓库运往A地水泥x 吨,试用x的一次式表示总运费W?

(2)你能确定当甲、乙两仓库各运往A,B多少吨水泥时,总运费461000元?最省的总运费是多少?

变式1:某厂一车间有64人,二车间有56人。现因工作需要,要求第一车间人数是第二车间人数的一半。问需从第一车间调多少人到第二车间?

2、学校分配学生住宿,如果每室住8人,还少12个床位,如果每室住9人,则空出两个房间。求房间的个数和学生的人数。

3、甲仓库有存粮120吨,乙仓库有存粮食80吨,现从甲库调部分到乙库,若要求调运后甲库的存粮是乙库的 2/3 ,问应从甲库调多少吨粮食到乙库?

4、某公司原有职员60名,其中女职员占20%,今年又有几位男职员辞职,公司又补招了3名女职员,女职员的比例提高到25%,问公司离开公司的男职员一共有几人?

(7)行程问题。

要掌握行程中的基本关系:路程=速度×时间。

注意:行程问题可以采用画示意图的辅助手段来帮助理解题意,并注意两者运动时出发的时间和地点。

相遇问题(相向而行)这类问题的相等关系是:

各人走路之和等于总路程或同时走时两人所走的时间相等为等量关系。 甲走的路程+乙走的路程=全路程

例:甲、乙两人从相距为180千米的A、B两地同时出发,甲骑自行车,乙开汽车,沿同一条路线相向匀速行驶。已知甲的速度为15千米/小时,乙的速度为45千米/小时。 (1)经过多少时间两人相遇?

(2)相遇后经过多少时间乙到达A地?

变式:甲、乙两人从A,B两地同时出发,甲骑自行车,乙开汽车,沿同一条路线相向匀速行驶。出发后经3 小时两人相遇。已知在相遇时乙比甲多行了90千米,相遇后经 1小时乙到达A地。问甲、乙行驶的速度分别是多少?

追及问题(同向而行),这类问题的等量关系是:

两人的路程差等于追及的路程或以追及时间为等量关系。 ① 同时不同地:甲的时间=乙的时间

甲走的路程-乙走的路程=原来甲、乙相距的路程 ② 同地不同时:甲的时间=乙的时间-时间差 甲的路程=乙的路程

例:市实验中学学生步行到郊外旅行。(1)班学生组成前队,步行速度为4千米/时,(2)班学生组成后队,速度为6千米/时。前队出发1小时后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回进行联络,他骑车的速度为12千米/时。 (1)后队追上前队需要多长时间?

(2)后队追上前队时间内,联络员走的路程是多少? (3)两队何时相距3千米? (4)两队何时相距8千米?

(word完整版)北师大七年级数学上一元一次方程应用题分类总结

列一元一次方程解应用题的类型及练习列一元一次方程解应用题的一般步骤:(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,?然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)
推荐度:
点击下载文档文档为doc格式
27cw34zrwq4qfr01784a35m4y31es80158w
领取福利

微信扫码领取福利

微信扫码分享