好文档 - 专业文书写作范文服务资料分享网站

人教版高中数学知识点总结新

天下 分享 时间: 加入收藏 我要投稿 点赞

2、不等式的性质: ①a?b?b?a; ②a?b,b?c?a?c; ③a?b?a?c?b?c;

④a?b,c?0?ac?bc,a?b,c?0?ac?bc;⑤a?b,c?d?a?c?b?d;

nn⑥a?b?0,c?d?0?ac?bd; ⑦a?b?0?a?b?n??,n?1?;

nn⑧a?b?0?a?b?n??,n?1?.

小结:代数式的大小比较或证明通常用作差比较法:作差、化积(商)、判断、结论。 在字母比较的选择或填空题中,常采用特值法验证。 3、一元二次不等式解法: (1)化成标准式:ax线性规划问题:

1.了解线性约束条件、目标函数、可行域、可行解、最优解

2.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值问题. 3.解线性规划实际问题的步骤:

(1)将数据列成表格;(2)列出约束条件与目标函数;(3)根据求最值方法:①画:画可行域;②移:移与目标函数一致的平行直线;③求:求最值点坐标;④答;求最值; (4)验证。 两类主要的目标函数的几何意义: ①z2?bx?c?0,(a?0);(2)求出对应的一元二次方程的根;

(3)画出对应的二次函数的图象; (4)根据不等号方向取出相应的解集。

?ax?by-----直线的截距;②z?(x?a)2?(y?b)2-----两点的距离或圆的半径;

a?b?0,b?0,则a?b?2ab,即?ab.

2?a?b?; ab????a?0,b?0??2?24、均值定理: 若aa?b称为正数a、b的算术平均数,ab称为正数a、b的几何平均数. 25、均值定理的应用:设x、y都为正数,则有

⑴若x?,则当x?y时,积xy取得最大值y?s(和为定值)

s2. 4⑵若xy?,则当x?y时,和x?y取得最小值2p. p(积为定值)

注意:在应用的时候,必须注意“一正二定三等”三个条件同时成立。

选修1-1,1-2知识点

第一部分 简单逻辑用语

1、命题:用语言、符号或式子表达的,可以判断真假的陈述句.

真命题:判断为真的语句.假命题:判断为假的语句. 2、“若p,则q”形式的命题中的p称为命题的条件,q称为命题的结论. 3、原命题:“若p,则q” 逆命题: “若q,则p” 否命题:“若?p,则?q” 逆否命题:“若?q,则?p” 4、四种命题的真假性之间的关系:

(1)两个命题互为逆否命题,它们有相同的真假性;

(2)两个命题为互逆命题或互否命题,它们的真假性没有关系. 5、若p?q,则p是q的充分条件,q是p的必要条件. 若p?q,则p是q的充要条件(充分必要条件).

利用集合间的包含关系: 例如:若A?B,则A是B的充分条件或B是A的必要条件;若A=B,则A是B的充要条件;

6、逻辑联结词:⑴且(and) :命题形式p?q;⑵或(or):命题形式p?q; ⑶非(not):命题形式?p.

p?q p q p?q ?p

真 真 假 假 真 假 真 假 真 假 假 假 真 真 真 假 假 假 真 真 7、⑴全称量词——“所有的”、“任意一个”等,用“?”表示;

全称命题p:?x?M,p(x); 全称命题p的否定?p:?x?M,?p(x)。 ⑵存在量词——“存在一个”、“至少有一个”等,用“?”表示;

特称命题p:?x?M,p(x); 特称命题p的否定?p:?x?M,?p(x);

第二部分 圆锥曲线

1、平面内与两个定点F1,F2的距离之和等于常数(大于F)的点的轨迹称为椭圆. 1F2即:|MF1|?|MF2|?2a,(2a?|F1F2|)。

这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 2、椭圆的几何性质: 焦点的位置 焦点在x轴上 焦点在y轴上 图形 标准方程 x2y2??1?a?b?0? a2b2y2x2??1?a?b?0? a2b2范围 ?a?x?a且?b?y?b ?b?x?b且?a?y?a ?1??a,0?、?2?a,0? 顶点 ?1?0,?a?、?2?0,a? ?1??b,0?、?2?b,0? F1?0,?c?、F2?0,c? ?1?0,?b?、?2?0,b? 轴长 焦点 焦距 对称性 离心率 短轴的长?2b 长轴的长?2a F1??c,0?、F2?c,0? F1F2?2c?c2?a2?b2? 关于x轴、y轴、原点对称 cb2e??1?2?0?e?1? aa3、平面内与两个定点F1,F2的距离之差的绝对值等于常数(小于F1F2)的点的轨迹

称为双曲线.即:||MF1|?|MF2||?2a,(2a?|F1F2|)。

这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距. 4、双曲线的几何性质: 焦点在y轴上 焦点的位置 焦点在x轴上 图形 标准方程 x2y2??1?a?0,b?0? a2b2y2x2??1?a?0,b?0? a2b2范围 顶点 轴长 焦点 焦距 对称性 离心率 x??a或x?a,y?R y??a或y?a,x?R ?1??a,0?、?2?a,0? F1??c,0?、F2?c,0? ?1?0,?a?、?2?0,a? F1?0,?c?、F2?0,c? 虚轴的长?2b 实轴的长?2a F1F2?2c?c2?a2?b2? 关于x轴、y轴对称,关于原点中心对称 cb2e??1?2?e?1? aay??bx ay??ax b渐近线方程 5、实轴和虚轴等长的双曲线称为等轴双曲线.

6、平面内与一个定点F和一条定直线l的距离相等的点的轨迹称为抛物线.定点F称为抛物线的焦点,定直线l称为抛物线的准线. 7、抛物线的几何性质: y2?2px 标准方程 y2??2px x2?2py x2??2py ?p?0? 图形 顶点 ?p?0? ?p?0? ?p?0? ?0,0?

对称轴 x轴 y轴 p??F?0,? 2??p??F?0,?? 2??焦点 ?p?F?,0? ?2??p?F??,0? ?2?准线方程 x??p 2x?p 2y??p 2y?p 2离心率 e?1 范围 x?0 x?0 y?0 y?0 8、过抛物线的焦点作垂直于对称轴且交抛物线于?、?两点的线段??,称为抛物线的“通径”,即???2p. 9、焦半径公式:

p; 2p若点??x0,y0?在抛物线x2?2py?p?0?上,焦点为F,则?F?y0?;

2若点??x0,y0?在抛物线y2?2px?p?0?上,焦点为F,则?F?x0?

第三部分 导数及其应用

1、函数f?x?从x1到x2的平均变化率:

f?x2??f?x1?

x2?x1x?x02、导数定义:f?x?在点x0处的导数记作y??f?(x0)?lim?x?0f(x0??x)?f(x0);.

?x3、函数y?f?x?在点x0处的导数的几何意义是曲线线的斜率.

4、常见函数的导数公式:

'①C?0;②(x)?nxx'xn'n?1y?f?x?在点

??x0,f?x0??处的切

; ③(sinx)?cosx;④(cosx)??sinx;

x'''⑤(a)?alna;⑥(e)?e; ⑦(logax)?x'11';⑧(lnx)? xlnax5、导数运算法则:

??f??x??g??x?fx?gx??????1? ???;

??2? ??f?x??g?x????f??x?g?x??f?x?g??x?;

?f?x???f??x?g?x??f?x?g??x?g?x??0?????2??3??g?x???g?x???.

6、在某个区间?a,b?内,若f??x??0,则函数y?f?x?在这个区间内单调递增; 若f??x??0,则函数y?f?x?在这个区间内单调递减.

7、求函数y?f?x?的极值的方法是:解方程f??x??0.当f??x0??0时:

?1?如果在x0附近的左侧f??x??0,右侧f??x??0,那么f?x0?是极大值; ?2?如果在x0附近的左侧f??x??0,右侧f??x??0,那么f?x0?是极小值.

8、求函数y?f?x?在?a,b?上的最大值与最小值的步骤是:

?1?求函数y?f?x?在?a,b?内的极值;

?2?将函数y?f?x?的各极值与端点处的函数值f?a?,f?b?比较,其中最大的一个是最

大值,最小的一个是最小值.

9、导数在实际问题中的应用:最优化问题。

第四部分 复数

1.概念:

(1) z=a+bi∈R?b=0 (a,b∈R)?z=z? z2≥0; (2) z=a+bi是虚数?b≠0(a,b∈R);

(3) z=a+bi是纯虚数?a=0且b≠0(a,b∈R)?z+z=0(z≠0)?z2<0; (4) a+bi=c+di?a=c且c=d(a,b,c,d∈R);

2.复数的代数形式及其运算:设z1= a + bi , z2 = c + di (a,b,c,d∈R),则: (1) z 1±z2 = (a + b)± (c + d)i;

(2) z1.z2 = (a+bi)·(c+di)=(ac-bd)+ (ad+bc)i; (3) z1÷z2 =

(a?bi)(c?di)?bdbc?ad (z≠0) ; ? ac2?i(c?di)(c?di)c2?d2c2?d23.几个重要的结论:

(1) (1?i)2??2i;⑷1?i?i;1?i??i;

1?i1?i(2) i性质:T=4;i4n?1,i4n?1?i,i4n?2??1,i4n?3??i;i4n?i4n?1?i4?2?i4n?3?0; (3) z?1?zz?1?z?1。 z

人教版高中数学知识点总结新

2、不等式的性质:①a?b?b?a;②a?b,b?c?a?c;③a?b?a?c?b?c;④a?b,c?0?ac?bc,a?b,c?0?ac?bc;⑤a?b,c?d?a?c?b?d;nn⑥a?b?0,c?d?0?ac?bd;⑦a?b?0?a?b?n??,n?1?;nn⑧a?b?0?a?b?n??,n?1?.
推荐度:
点击下载文档文档为doc格式
271ax05n1481m9s3zh06
领取福利

微信扫码领取福利

微信扫码分享