第五章作业选讲
5 -8 在氯化铯晶体中,一价氯离子Cl与其最邻近的八个一价铯离子Cs+构成如图所示的立方晶格结构.(1) 求氯离子所受的库仑力;(2) 假设图中箭头所指处缺少一个铯离子(称作晶格缺陷),求此时氯离子所受的库仑力.
-
分析 铯离子和氯离子均可视作点电荷,可直接将晶格顶角铯离子与氯离子之间的库仑力进行矢量叠加.为方便计算可以利用晶格的对称性求氯离子所受的合力.
解 (1) 由对称性,每条对角线上的一对铯离子与氯离子间的作用合力为零,故F1 =0. (2) 除了有缺陷的那条对角线外,其它铯离子与氯离子的作用合力为零,所以氯离子所受的合力F2 的值为
q1q2e29F2???1.92?10N 224πε0r3πε0aF2 方向如图所示.
5 -12 两条无限长平行直导线相距为r0 ,均匀带有等量异号电荷,电荷线密度为λ.(1) 求两导线构成的平面上任一点的电场强度( 设该点到其中一线的垂直距离为x);(2) 求每一根导线上单位长度导线受到另一根导线上电荷作用的电场力.
分析 (1) 在两导线构成的平面上任一点的电场强度为两导线单独在此所激发的电场的叠加.(2) 由F =qE,单位长度导线所受的电场力等于另一根导线在该导线处的电场强度乘以单位长度导线所带电量,即:F =λE.应该注意:式中的电场强度E 是另一根带电导线激发的电场强度,电荷自身建立的电场不会对自身电荷产生作用力.
解 (1) 设点P 在导线构成的平面上,E+、E-分别表示正、负带电导线在P 点的电场强度,则有
E?E??E???λ?11????i??2πε0?xr0?x?λr0i2πε0x?r0?x?
(2) 设F+、F-分别表示正、负带电导线单位长度所受的电场力,则有
?2F???E??i
2π?0r0λ2F???λE???i
2πε0r0显然有F+=F-,相互作用力大小相等,方向相反,两导线相互吸引.
5 -14 设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量.
分析 方法1:由电场强度通量的定义,对半球面S 求积分,即Φs?E?dS
S?方法2:作半径为R 的平面S′与半球面S 一起可构成闭合曲面,由于闭合面内无电荷,由高斯定理
?E?dS?S1q?0 ?ε0这表明穿过闭合曲面的净通量为零,穿入平面S′的电场强度通量在数值上等于穿出半球面S 的电场强度通量.因而
Φ??E?dS???E?dS
SS?解1 由于闭合曲面内无电荷分布,根据高斯定理,有
Φ??E?dS???E?dS
SS?依照约定取闭合曲面的外法线方向为面元dS 的方向,
Φ??E?πR2?cosπ?πR2E
5 -20 一个内外半径分别为R1 和R2 的均匀带电球壳,总电荷为Q1 ,球壳外同心罩一个半径为R3 的均匀带电球面,球面带电荷为Q2 .求电场分布.电场强度是否为离球心距离r 的连续函数? 试分析.
分析 以球心O 为原点,球心至场点的距离r 为半径,作同心球面为高斯面.由于电荷呈球对称分布,电场强度也为球对称分布,高斯面上电场强度沿径矢方向,且大小相等.因而
2 .在确定高斯面内的电荷?q 后,利用高斯定理?EdS??q/ε0即可EdS?E?4πr?求出电场强度的分布.
解 取半径为r 的同心球面为高斯面,由上述分析
E?4πr2??q/ε0
r <R1 ,该高斯面内无电荷,?q?0,故E1?0
R1 <r <R2 ,高斯面内电荷Pi R3)
Q1r?R?q?R3?R2?????33131? (v=4/3
Q1r3?R13故 E2? + 34πε0R2?R13r2
R2 <r <R3 ,高斯面内电荷为Q1 ,故
E3?r >R3 ,高斯面内电荷为Q1 +Q2 ,故
Q1
4πε0r2E4?Q1?Q2
4πε0r2电场强度的方向均沿径矢方向,各区域的电场强度分布曲线如图(B)所示.在带电球面的两侧,电场强度的左右极限不同,电场强度不连续,而在紧贴r =R3 的带电球面两侧,电场强度的跃变量
ΔE?E4?E3?Q2σ?
4πε0R32ε0这一跃变是将带电球面的厚度抽象为零的必然结果,且具有普遍性.实际带电球面应是有一定厚度的球壳,壳层内外的电场强度也是连续变化的,本题中带电球壳内外的电场,在球壳的厚度变小时,E 的变化就变陡,最后当厚度趋于零时,E的变化成为一跃变.
5 -21 两个带有等量异号电荷的无限长同轴圆柱面,半径分别为R1 和R2 >R1 ),单位长度上的电荷为λ.求离轴线为r 处的电场强度:(1) r <R1 ,(2) R1 <r <R2 ,(3) r >R2 .
分析 电荷分布在无限长同轴圆柱面上,电场强度也必定沿轴对称分布,取同轴圆柱面为高斯面,只有侧面的电场强度通量不为零,且EdS?E?2πrL,求出不同半径高斯面内的电荷
??q.即可解得各区域电场的分布.
解 作同轴圆柱面为高斯面,根据高斯定理
E?2πrL??q/ε0 r <R1 , ?q?0
E1?0
在带电面附近,电场强度大小不连续,电场强度有一跃变 R1 <r <R2 ,
?q?λL
E2?λ 2πε0rr >R2,
?q?0