精品文档
19.解 首先在x?0时,分别求出函数各表达式的导数,即 当x?0时,f?(x)?(xe)??e?1x?1x?xe?1x?11?2?ex(1?)
xx11? 当?1?x?0时,f?(x)??ln(x?1)??.
x?1 然后分别求出在x?0处函数的左导数和右导数,即
??(0)?lim f x?0?1?1 x?1?1x1??(0)?lime(1?)?0 f x?0?x??(0)?f ??(0),函数在x?0处不可导. 从而f ??11xe(1?) x?0??x 所以f?(x)?? ?1 x?0??x?120.解 y?sin(x?y)
y??cos(x?y)(1?y?)?cos(x?y)?y?cos(x?y) ① y????sin(x?y)(1?y?)?y??cos(x?y)?y???sin(x?y)?(1?y?) ?1?cos(x?y)?y????sin(x?y)(1?y?)2
sin(x?y)(1?y?)2 y???? ②
1?cos(x?y) 又由①解得y??cos(x?y)
1?cos(x?y)2?cos(x?y)?cos(x?y)?1?1?cos(x?y)??? 代入②得y??1?cos(x?y) ??sin(x?y) 3?1?cos(x?y)?321.解 先出求f(x)的一阶导数:f?(x)?4x3?6x2?4x2(x?)
2精品文档
精品文档
33 令f?(x)?0 即4x2(x?)?0 解得驻点为x1?0,x2?.
22 再求出f(x)的二阶导数f??(x)?12x2?12x?12x(x?1).
33327时,f??()?9?0,故f()??是极小值. 222163 当x1?0时,f??(0)?0,在(??,0)内,f?(x)?0,在(0,)内f?(x)?0
2 当x2? 故 x1?0不是极值点.
22.解 23.解 24.解 精品文档
总之 曲线f(x)?x4?2x2只有极小值点x?32. ? x3x3?x?x2?1?xx2?1?x(x2?1)?xx2?1?x?xx2?1 ? ?x3x2?1dx??(x?xxx2?1)dx??xdx??x2?1dx ?121d(x2?1)2x?2?x?1?12x2?12ln(x2?1)?C 由题设知f(x)?(xlnx)??lnx?x(lnx)??lnx?1 故?x?f(x)dx??x(lnx?1)dx ??xlnxdx??xdx
??lnx1dx2?1x222
?12?lnx?x2??x2d(lnx)??12x2
?12lnx?x2?12?x211xdx?2x2
?1112x2lnx?2?xdx?2x2
?112x2lnx?4x2?C.
? ?0k??1?x2dx?k?01??1?x2dx?k?alim01????a1?x2dx ?k?limarctanx0?a???a?k?alim???(?arctana)?k?2
又
?0k??1?x2dx?12 精品文档
故 k?25.解 ?
?2?11 解得k?. 2??f?f??2x?6,?3y2?12 ?x?y??2x?6?0 解方程组?2得驻点A0(3,2),B0(3,?2)
3y?12?0???xx??2,B?f ??xy?0,C?f ??yy?6y 又 ?A?f 26.解 27.证
精品文档
对于驻点A20:A??2,B?0,C?6yx?3??12,故B?AC?24?0y?2 ? 驻点A0不是极值点.
对于驻点B0:A??2,B?0,C?6yx?3??12
y??2故 B2?AC??24?0,又A??2?0.
? 函数f(x,y)在B0(3,?2)点取得极大值 f(3,?2)?(?2)3?9?18?24?5?30
由y?x2与x?y2得两曲线的交点为O(0,0)与A(1,1) x?y2(y?0)的反函数为y?x. ?
??(x2?y)dxdy??1dx?x21210x2(x?y)dy??0(xy?y2)xdx
D2x2??1?50?(x2?1x)?(x4?1x4)??
?22dx? ?(277x2?14x2?3513310x)0?140?
?af(x)dx??a?0??x2??a00f(x)dx???dx
??ax2dx??a?a00???0f(x)dx???dx ?13aaa3x0??0f(x)dx??0dx
精品文档
aa3?a?f(x)dx ?03?
?a0f(x)dx?a?aa0a3f(x)dx?
3于是?0a3f(x)dx?.
3(a?1)28.解 (1)先求函数的定义域为(0,??). (2)求y?和驻点:y??1?lnx,令y??0得驻点x?e. 2x (3)由y?的符号确定函数的单调增减区间及极值. 当0?x?e时,y??1?lnx?0,所以y单调增加; 2x 当x?e时,y??0,所以y单调减少.
1 由极值的第一充分条件可知yx?e?为极大值.
e
(4)求y??并确定y??的符号:
2lnx?3 y???,令y???0得x?e2. 3x3 当0?x?e时,y???0,曲线y为凸的; 当x?e时,y???0,曲线y为凹的.
3? 根据拐点的充分条件可知点(e,e2)为拐点.
23233232这里的y?和y??的计算是本题的关键,读者在计算时一定要认真、仔细。 另外建议读者用列表法来分析求解更为简捷,现列表如下:
x (0,e) e (e,e) 32 e 3232 (e,??) 精品文档
精品文档
y? + 0 - - - y?? - 0 + 就表上所给的y?和y??符号,可得到:
lnx的单调增加区间为(0,e); xlnx 函数y?的单调减少区间为(e,??);
xlnx1 函数y?的极大值为y(e)?;
xe 函数y?lnx 函数y?的凸区间为(0,e2);
xlnx 函数y?的凹区间为(e2,??);
x3?2lnx2 函数y?的拐点为(e,e).
2x3333lnxlnx?0,lim??
x???xx?0?xlnx 所以曲线y?有
x (5)因为lim 水平渐近线y?0 铅垂渐近线x?0
(6)根据上述的函数特性作出函数图形如下图.
精品文档
最新数学专升本考试试题



