好文档 - 专业文书写作范文服务资料分享网站

煅烧骨壳聚糖复合材料的制备及表征 - 图文 

天下 分享 时间: 加入收藏 我要投稿 点赞

LIAO J, HUANG XL, ZHOU Q, CHENG YT, HUO H, LI F, WU C, SHI QH, LIAO YM, LIANG X. Preparation and characterization of calcined bone/chitosan

composite material. Zhongguo Zuzhi Gongcheng Yanjiu. 2020;24(22):3452-3459. DOI:10.3969/j.issn.2095-4344.2306

羟基磷灰石特征峰 β-磷酸三钙特征峰

图注:煅烧骨中既 ) st含有羟基磷灰石的nu o特征衍射峰又具有C( 度β-磷酸三钙的特征强峰

2-Theta(°)

图1 煅烧骨的X射线衍射图谱

Figure 1 X-ray diffraction pattern of calcined bone

图注:复合材料既含有羟

基磷灰石的特征衍射峰又具有β-磷酸三钙的特 度征峰,并且随着煅烧骨质 强量比的不断增加,羟基磷 灰石/β-磷酸三钙的特征 衍射峰增强

10 20 30 40 50 60 70

衍射角2θ(°)

图 3 不同质量比例煅烧骨(CB)/壳聚糖(CS)复合材料的X射线衍射

图谱

Figure 3

X-ray diffraction pattern of different proportions of calcined bone/chitosan composite material

煅烧骨 /壳聚糖=1/2 煅烧骨/壳聚糖=1/1 煅烧骨/壳聚糖=2/1

×100

×2 000

×10 000

×40 000

图注:煅烧骨颗粒比较均匀地分散在壳聚糖介质中

5 不同质量比例煅烧骨/壳聚糖复合材料的扫描电镜观察图 Figure 5 Scanning electron microscope images of different proportions of calcined bone/chitosan composite

0.160

0.140 )g0.120 / L0.100 图注:煅烧骨主要由m(0.080 0.1-2.0 μm 直径的 容孔0.060 孔和100-350 μm0.040 总0.020 的孔所组成 0 0.001 0.01 0.1 1 10 100 1 000

孔径(μm) 图 8 煅烧骨粉的孔径范围 Figure 8 Measurement and analysis of calcined bone with mercury porosimetry

图注:Bio-oss中 )既含有羟基磷灰stnu石的特征衍射峰oC(又具有β-磷酸三度 强钙的特征峰

2-Theta(°)

图2 Bio-oss骨粉的X射线衍射图谱

Figure 2 X-ray diffraction pattern of Bio-oss bone powder

煅烧

骨粉

Bio-oss 骨粉

图注:煅烧骨粉颗粒拥有大小相互贯通的孔隙,在较大孔壁上还分散着许多较小的微孔,而

Bio-oss骨粉颗粒内部孔隙较少 图

4 煅烧骨与Bio-oss骨粉的扫描电镜观察图片 Figure 4

Scanning electron microscope images of calcined bone and Bio-oss bone powder

煅烧骨

图6 煅烧骨粉与 )Bio-oss骨粉的傅里叶%(e 红外光谱

cnaFigure 6 Fourier t timTransform Infrared sn arSpectroscopy

T spectra of calcined bone powder and 4 000 3 000 2 000 1 000

Bio-oss bone powder

波长(cm-1)

图注:复合材料中仍然

)包含了壳聚糖(CS)和煅%( e烧骨(CB)(羟基磷灰石/ cnaβ-磷酸三钙)的特征峰, ttim并且随着煅烧骨比例的s nar增加,属于羟基磷灰石T 1456.2 1096.2 605.3 566.6 和β-磷酸三钙的特征峰 强度逐渐增加,壳聚糖

3 500 3 000 2 500 2 000 1 500 1 000 500 特征峰逐渐减弱

波长(cm-1)

7 不同材料的傅里叶红外光谱图

Figure 7 Fourier Transform Infrared Spectroscopy spectra of different proportions of calcined bone/chitosan composite

A B C D

图注: A-C为煅烧骨/壳聚糖分别为1/2、1/1、2/1复合材料浸提液中

的细胞,D为阴性对照组,细胞在3种不同比例的复合材料浸提液中 生长良好,与阴性对照组没有差别

9 L929细胞在不同比例煅烧骨/壳聚糖复合材料浸提液中培养7 d后的形态

(倒置相差显微镜,×200) Figure 9 leaching solution of different proportions of calcined bone/chitosan Morphology of L929 fibroblasts after 7 days of culture in the

composite material (inverted phase microscope, ×200)

3457

廖健,黄晓林,周倩,程余婷,霍花,李芳,伍超,石前会,廖运茂,梁星. 煅烧骨/壳聚糖复合材料的制备及表征[J]. 中国组织工程研究,2020,24(22):3452-3459. DOI:10.3969/j.issn.2095-4344.2306

目前作为骨移植材料普遍应用在口腔临床中的Bio-oss骨粉(Geistlich,瑞士)就是从牛骨中提取的。然而,单一的羟基磷灰石很难满足骨移植材料的要求,很多学者都致力于将羟基磷灰石和壳聚糖等材料进行组合,通过各种复合方法得到性能更加优异的复合材料,满足骨组织修复的要求。羟基磷灰石与壳聚糖复合的方法繁多,据报道有:溶液共混法[37]、原位沉析法[38]、交联法[39]、共沉淀法[40]、冻干法[41-43]、静电纺丝法[21]、相分离法[44]、溶融灌注法[45]、模拟体液矿化法 与之共培养后,根据细胞的生长增殖情况可以判断材料的细胞毒性,如材料具有毒性则容易抑制细胞增殖活性。实验采用复合材料的浸提液与L929成纤维细胞共同培养,通过CCK-8试剂盒测定材料与细胞共培养后细胞的生长曲线,结果表明成纤维细胞的生长增殖没有受到影响,这一点从细胞与材料浸提液共培养后细胞的形态观察方面得到证实。各复合材料组细胞相对增殖率为94.2%-98.5%,对应的细胞毒性为1级,符合生物材料安全级别要求。

等[46],或多种方法的联合应用。煅烧骨与壳聚糖的复合方法目前仅见1篇文章报道

[47]

,该文选用京尼平作为交联剂,用

“溶液共混法”结合“共沉淀法”将壳聚糖的衍生产物羧甲基壳聚糖与煅烧骨按1∶1的质量比混合制成复合材料,并将其植入家兔体内,对植入后的成骨情况进行研究。然而此次实验选择单纯的溶液共混法制备羟基磷灰石/壳聚糖复合材料,更简单、更直接。该方法使无机的羟基磷灰石分散到壳聚糖基质中,模拟了自然骨组织由无机与有机构成的结构特点。壳聚糖在此方法中起到黏合剂或赋型剂的作用,它将分散的羟基磷灰石颗粒黏合在一起便于加工成型,解决了羟基磷灰石颗粒植入骨组织后易于迁移的弊端,同时,壳聚糖的降解会加速羟基磷灰石的降解速度,释放出供骨矿物沉积的Ca2+和PO3-4。实验分别按照质量比为1/2、1/1、2/1的比例制备煅烧骨/壳聚糖复合材料,一方面通过利用煅烧骨良好的支架作用及与人体骨相似的多孔结构,为骨组织的长入提供一个理想的先决条件;另一方面利用壳聚糖的良好的降解性能及骨诱导作用,引导骨组织长入并逐渐被替代。通过X射线衍射、傅里叶红外光谱对复合材料的理化性能进行表征后发现,复合材料组成仍然是羟基磷灰石、β-磷酸三钙和壳聚糖3种成分,证明煅烧骨与壳聚糖之间属于物理结合,原材料的理化性能并没有因为复合而发生改变。扫描电镜图片中可见煅烧骨颗粒均匀地分散在壳聚糖基质中,高倍镜下可见晶体状的羟基磷灰石周围有壳聚糖黏附,复合材料中无机相(煅烧骨颗粒)和有机相(壳聚糖)结合良好,复合材料保留了煅烧骨与壳聚糖各组分的特性,既拥有自然骨的多孔网状结构及主要无机成分,又因为壳聚糖的加入增强了韧性和强度。力学性能测试结果表明,3种不同质量比例的煅烧骨/壳聚糖复合材料的抗压强度在22.3-89.3 MPa之间,可以基本满足牙槽骨骨移植材料的要求。

壳聚糖作为一种天然聚合物,无毒无刺激,具有良好的生物相容性,并且具备抗菌、防感染等特性

[48-50]

。按照

国际化标准组织(ISO)和中国卫生部相关文件规定,长时间用于体内的材料在体内试验前必须进行体外细胞毒性检测。就算是单一材料经检测无毒性,但和其他材料复合后可能因为制备过程中成分或结构发生改变,也必须重视其毒性可能发生变化,因此还需要重新检测以评估其细胞毒性,所以检测实验中制备的煅烧骨/壳聚糖复合材料的细胞毒性是很有必要的。L929细胞株是小鼠成纤维细胞系,它来源于肺结缔组织,具有增殖能力强、能够无限增殖的优势,但其对生长环境状况异常敏感,是科研工作中检测细胞毒性普遍使用的细胞之一,当待测样品加入其培养基内

3458

总之,课题通过煅烧牛骨得到拥有羟基磷灰石和β-磷酸三钙双重成分的煅烧骨,首次采用“溶液共混”的方法将煅烧骨和壳聚糖进行复合得到一种新的复合材料,它们保留了煅烧骨与壳聚糖各组分的特征,既维持了自然骨的多孔网状结构及无机的羟基磷灰石成分,又因为壳聚糖的加入增强了韧性和强度,具备了作为骨移植材料应该具备的理化性能;同时又对L929成纤维细胞无细胞毒性,符合生物材料的安全性要求,该复合材料有望为骨移植材料的选择提供一种新的思路和方法。

作者贡献:廖健、梁星进行实验设计,实验实施为廖健,实验评估为梁星、廖运茂,资料收集为黄晓林、周倩、程余婷、霍花、李芳、

伍超、石前会,廖健成文,梁星审校。

经费支持:该文章接受了“国家自然科学基金(81660179)、贵州省自然科学基金资助项目(黔科合基础[2016]1124)、贵州省自然科学基金联合基金项目(黔科合LH[2016]7257)”的资助。所有作者声明,经费支持没有影响文章观点和对研究数据客观结果的统计分析及其报道。

利益冲突:文章的全部作者声明,在课题研究和文章撰写过程不存在利益冲突。

写作指南:该研究遵守国际医学期刊编辑委员会《学术研究实验与报告和医学期刊编辑与发表的推荐规范》。

文章查重:文章出版前已经过专业反剽窃文献检测系统进行3次查重。

文章外审:文章经小同行外审专家双盲外审,同行评议认为文章符合期刊发稿宗旨。

生物统计学声明:该文统计学方法已经贵州医科大学生物统计学专家审核。

文章版权:文章出版前杂志已与全体作者授权人签署了版权相关协议。

开放获取声明:这是一篇开放获取文章,根据《知识共享许可协议》“署名-非商业性使用-相同方式共享4.0”条款,在合理引用的情况下,允许他人以非商业性目的基于原文内容编辑、调整和扩展,同时允许任何用户阅读、下载、拷贝、传递、打印、检索、超级链接该文献,并为之建立索引,用作软件的输入数据或其它任何合法用途。

4 参考文献 References

[1]

TRAINI T, PIATTELLI A, CAPUTI S, et al. Regeneration of human bone using different bone substitute biomaterials.Clin Implant Dent Relat Res.2015;17(1):150-162.

[2]

XI Y, MIAO X, LI Y, et al. BMP2-mimicking peptide modified with E7

coupling to calcined bovine bone enhanced bone regeneration associating with activation of the Runx2/SP7 signaling axis.J Biomed Mater Res B Appl Biomater. 2020;108(1):80-93.

[3]

IIJIMA K, TSUJI Y, KURIKI I, et al. Control of cell adhesion and

proliferation utilizing polysaccharide composite film scaffolds.Colloids Surf B Biointerfaces. 2017;160:228-237.

[4]

GRAHAM SM, LEONIDOU A, ASLAM-PERVEZ N, et al. Biological therapy of bone defects:the immunology of bone allo-transplantation. Expert opin Biol Ther.2010;10(6):885-901.

[5]

赵淑珍,张婷,王彦鹏,等.复合3D支架在修复颅骨缺损中的应用进展[J].中国综合临床,2019,35(2):183-186.

LIAO J, HUANG XL, ZHOU Q, CHENG YT, HUO H, LI F, WU C, SHI QH, LIAO YM, LIANG X. Preparation and characterization of calcined bone/chitosan

composite material. Zhongguo Zuzhi Gongcheng Yanjiu. 2020;24(22):3452-3459. DOI:10.3969/j.issn.2095-4344.2306

[6]

RESMIM CM, DALPASQUALE M, VIELMO NIC, et al.Study of physico-chemical properties and in vitro antimicrobial activity of

hydroxyapatites obtained from bone calcination.Prog Biomater. 2019;

8(1):1-9.

[7]

GOTO T, SASAKI K. Synthesis of morphologically controlled

hydroxyapatite from fish bone by urea-assisted hydrothermal treatment and its Sr2+ sorption capacity.Powder Technol. 2016;292: 314-322.

[8]

TEKIYEH RM, NAJAFI M, SHAHRAKI S. Machinability of

AA7075-T6/carbon nanotube surface composite fabricated by friction stir processing. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering. 2018;233(4):

839-848.

[9]

ANWAR A, AKBAR S. Novel continuous microwave assisted flow synthesis of nanosized manganese substituted hydroxyapatite.Ceram Int.2018;44(9):10878-10882.

[10]

DOMíNGUEZ-TRUJILLO C, PEóN E, CHICARDI E, et al. Sol-gel

deposition of hydroxyapatite coatings on porous titanium for biomedical applications.Surf Coat Technol.2018;333:158-162.

[11] 赵宏霞.羟基磷灰石微结构调控的研究进展[J].功能材料, 2017,48(1): 1047-01055.

[12]

RUIXIN L, CHENG X, YINGJIE L, et al. Degradation behavior and compatibility of micro, nanoHA/chitosan scaffolds with interconnected spherical macropores.Int J Biol Macromol. 2017;103: 385-394.

[13]

XU AT, QI WT, LIN MN, et al. The optimization of sintering treatment on bovine-derived bone grafts for bone regeneration: in vitro and in vivo evaluation.J Biomed Mater Res B Appl Biomater. 2020;108(1): 272-281.

[14]

HEIDARI F, RAZAVI M, GHAEDI M, et al. Investigation of mechanical properties of natural hydroxyapatite samples prepared by cold isostatic pressing method.J Alloys Compd. 2017;693: 1150-1156.

[15] TONSUAADU K, GROSS KA, PLUDUMA L, et al. A review on the thermal stability of calcium apatites. J Therm Anal Calorim. 2012; 110(2):647-659.

[16]

AHMAD FARA ANK, ABDULLAH HZ. Influence of Calcination Temperature on the Microstructure and Crystallographic Properties of Hydroxyapatite from Black Tilapia Fish Scale. Mater Sci Forum. 2016; 840:151-155.

[17] 徐子昂,刘晨,肖良,等.髓核组织工程支架的构建及其生物相容性[J].中国矫形外科杂志,2019,35(13):1211-1216.

[18] 赵献峰.壳聚糖负载TiO2抗菌材料的研究[J].山西化工, 2018,38(3): 17-18,32.

[19]

XIA YJ, WEI W, XIA H, et al. Effect of recombinant human bone morphogenetic protein delivered by chitosan microspheres on ectopic osteogenesis in rats.Exp Ther Med. 2019;17(5):3891-3898.

[20]

YUAN H, CHEN N, LU XY, et al. Experimental study of natural hydroxyapatite-chitosan composite on reconstructing bone defect. Stomatology.2005;25(2):65-67.

[21]

TENG SH, LEE EJ, YOON BH, et al. Chitosan/nanohydroxyapatite composite membranes via dynamic filtration for guided bone regeneration.J Biomed Mater Res A.2009;88(3):569-580.

[22]

GE Z, BAGUENARD S, LIM LY, et al. Hydroxyapatite–chitin materials as potential tissue engineered bone substitutes. Biomaterials. 2004; 25(6):1049-1058.

[23]

ITOH S, YAMAGUCHI I, SUZUKI M, et al. Hydroxyapatite-coated tendon chitosan tubes with adsorbed laminin peptides facilitate nerve regeneration in vivo.Brain Res.2003;993(1-2):111-123.

[24]

Lü X, ZHENG B, TANG X, et al. In vitro biomechanical and

biocompatible evaluation of natural hydroxyapatite/chitosan composite for bone repair.J Appl Biomater Biomech. 2011;9(1):11-18.

[25]

MARUYAMA M, ITO M. In vitro properties of a chitosan-bonded self-hardening paste with hydroxyapatite granules.J Biomed Mater Res.1996;32(4):527-532.

[26]

司徒镇强,吴军正.细胞培养[M].2版.西安:世界图书出版社公司, 2003: 186-187.

[27]

JIANG SD, JIANG LS, DAI LY. Surgical treatment of calcaneal fractures with use of beta-tricalcium phosphate ceramic grafting.Foot Ankle Int.2008;29(10):1015-1019.

[28]

王诗美.类骨质羟基磷灰石植入兔股骨缺损的实验研究[D].成都:四川大学, 2005.

[29]

JIN HH, KIM DH, KIM TW, et al. In vivo evaluation of porous hydroxyapatite/chitosan-alginate composite scaffolds for bone tissue engineering.Int J Biol Macromol. 2012;51(5):1079-1085.

[30] WANG J, QU L, MENG X, et al. Preparation and biological properties of PLLA/beta-TCP composites reinforced by chitosan fibers.Biomed Mater.2008;3(2):025004.

[31] 马东洋,薛振恂,刘兰忠,等.天然珊瑚和同种异体脱钙骨基质作为骨组织工程支架的组织相容性研究[J].西北国防医学杂志, 2003,24(4):259-260. [32]

HOLLINGER JO, BATTISTONE GC. Biodegradable bone repair materials. Synthetic polymers and ceramics.Clin Orthop Relat Res. 1986;(207):290-305.

[33] LU JX, FLAUTRE B, ANSELME K, et al. Role of interconnections in

porous bioceramics on bone recolonization in vitro and in vivo.J Mater Sci Mater Med.1999;10(2):111-120.

[34]

PE?A J, ROMáN J, VICTORIA CABA?AS M, et al. An alternative technique to shape scaffolds with hierarchical porosity at physiological temperature.Acta Biomater. 2010;6(4):1288-1296.

[35] VENKATESAN J, QIAN ZJ, RYU B, et al. A comparative study of thermal calcination and an alkaline hydrolysis method in the isolation of hydroxyapatite from Thunnus obesus bone.Biomed Mater. 2011; 6(3):035003.

[36] VENKATESAN J, KIM SK. Effect of Temperature on Isolation and Characterization of Hydroxyapatite from Tuna (Thunnus obesus) Bone. Materials (Basel).2010;3(10):4761-4772.

[37] ZHANG J, NIE J, ZHANG Q, et al. Preparation and characterization of bionic bone structure chitosan/hydroxyapatite scaffold for bone tissue engineering.J Biomater Sci Polym Ed.2014;25(1):61-74.

[38] ROGINA A, IVANKOVI? M, IVANKOVI? H. Preparation and

characterization of nano-hydroxyapatite within chitosan matrix. Mater Sci Eng C Mater Biol Appl.2013;33(8):4539-4544.

[39] PU XM, WEI K, ZHANG QQ. In situ forming chitosan/hydroxyapatite rods reinforced via genipin crosslinking.Mater Lett.2013;94:169-171. [40]

LIU H, PENG H, WU Y, et al. The promotion of bone regeneration by nanofibrous hydroxyapatite/chitosan scaffolds by effects on

integrin-BMP/Smad signaling pathway in BMSCs. Biomaterials. 2013; 34(18):4404-4417.

[41] VENKATESAN J, PALLELA R, BHATNAGAR I, et al.

Chitosan-amylopectin/hydroxyapatite and chitosan-chondroitin sulphate/hydroxyapatite composite scaffolds for bone tissue engineering.Int J Biol Macromol. 2012;51(5):1033-1042. [42] VENKATESAN J, RYU B, SUDHA PN, et al. Preparation and

characterization of chitosan-carbon nanotube scaffolds for bone tissue engineering.Int J Biol Macromol. 2012;50(2):393-402. [43] LIMA PA, RESENDE CX, SOARES GD, et al. Preparation,

characterization and biological test of 3D-scaffolds based on chitosan, fibroin and hydroxyapatite for bone tissue engineering.Mater Sci Eng C Mater Biol Appl. 2013;33(6):3389-3395.

[44] SUN F, LIM BK, RYU SC, et al. Preparation of multi-layered film of hydroxyapatite and chitosan. Mater Sci Eng C. 2010;30(6):789-794. [45] KIM H, KIM HM, JANG JE, et al. Osteogenic Differentiation of Bone Marrow Stem Cell in Poly(Lactic-co-Glycolic Acid) Scaffold Loaded Various Ratio of Hydroxyapatite.Int J Stem Cells. 2013;6(1):67-74. [46] MOHAMED KR, EL-RASHIDY ZM, SALAMA AA. In vitro properties of nano-hydroxyapatite/chitosan biocomposites. Ceram Int. 2011;37(8): 3265-3271.

[47] 张霁文.煅烧骨/羧甲基壳聚糖复合材料修复家兔下颌骨缺损实验研究[D].贵阳:贵州医科大学,2016.

[48] COSTA-PINTO AR, CORRELO VM, SOL PC, et al.

Chitosan-poly(butylene succinate) scaffolds and human bone marrow stromal cells induce bone repair in a mouse calvaria model.J Tissue Eng Regen Med.2012;6(1):21-28.

[49] SHAMELI K, AHMAD MB, YUNUS WM, et al. Green synthesis of silver/montmorillonite/chitosan bionanocomposites using the UV irradiation method and evaluation of antibacterial activity.Int J Nanomedicine. 2010;5:875-887.

[50] SHAMELI K, AHMAD MB, YUNUS WM, et al. Silver/poly (lactic acid) nanocomposites: preparation, characterization, and antibacterial activity. Int J Nanomedicine.2010;5:573-579.

3459

煅烧骨壳聚糖复合材料的制备及表征 - 图文 

LIAOJ,HUANGXL,ZHOUQ,CHENGYT,HUOH,LIF,WUC,SHIQH,LIAOYM,LIANGX.Preparationandcharacterizationofcalcinedbone/chitosancompositematerial.ZhongguoZuzhiGongchengYanji
推荐度:
点击下载文档文档为doc格式
26ra24kzie3sk4u09qt56trx0171wu00etp
领取福利

微信扫码领取福利

微信扫码分享