在动量表象中验证无限深势阱中粒子的不确定关系式
王为民(四川南充龙门中学)
摘要 由于教材和参考资料没有在动量表象计算无限深势阱中粒子不确定关系的数学内容,使一部分人疑惑坐标表象和动量表象计算不确定关系缺乏数学的一致性。为了解决这个问题。本文的目的就是给出教材和参考书的这个缺失环节。
关键词 动量表象 不确定关系 平均值 无限深势阱
在动量表象中坐标算符的形式为
i?? ?p p动量算符的形式为
所以,在动量表象中的不确定关系式为
??????i???p???2??p?2?2 ?4这个关系式利用了
?x,p????i???,p??i?
??p?在无限深势阱中
?0V?x??????0?x?a??x?0,x?a?
粒子的定态薛定谔方程为
?2d2???E? 2mdx2其归一化本征函数为
?n?x??12?n??sin?x? a?a??在动量表象中,粒子的动量波函数为
?i??n??c?p??exp??px?sin?x?dx
?????a????a?坐标算符在动量表象中的平均值为
x??????c*(p)i???c?p?dp?p?i?i??n?????n??exppx'sinx'dx'xexp?pxsinx????dxdp???????????????aa???????????1i???n???n?????exp?x-x'pdpsinx'dx'xsinx????dx???????a??????????a??a??2??n???n??????x?x'sinx'dx'xsinx????dx??????a?a??a?1??a?2aa?2??2?n?xsinx??dx???a???坐标算符的平方的平均值为
x????????*????cpi??????c?p?dp?p?????1?i??n???i??n??2exppx'sinx'dx'xexp?pxsinx????dxdp?????????a???????a?a???????????1?i??n???n??2??exp?x-x'pdpsinx'dx'xsinx????dx?????????????a????a??a??2??n???n??2???x-x'sinx'dx'xsinx????dx???a???aa????2?2?2?n?xsinx??dxa???a??1?1?a2??22?2n???32??2
利用正弦函数的傅里叶变换
????sin(kx)e?i?xdx?i??????k??????k??
可将前面的无限粒子动量波函数写成
c?p???i??n??exp?pxx?dx??sin??????a????a?1????pn???pn????i???????????a???a???a???因为动量波函数正交归一 所以有其中?
?c?p????2dp??P???d??1
-???p,而 ?P????
???pn???pn??????????????a???a???a??2
P???定义在?-?,??上的偶函数,只在??????故p??n?取非零值。 a?????P???d??0
2?p2?n?????P???d???? ???a??22?n?????? ?a?2因此?x?x2?x2?a231?6n2?2
?p?p2?p?2?n?? a? 2在动量表象的无限深势阱中不确定关系式为
23其中n?1,2,3,?
?x?p?n2?2?6?
参考文献
1.【德】顾樵,《量子力学》Ⅱ,北京,科学出版社,2014.6.第349——351页
在动量表象中验证无限深势阱中粒子的不确定关系式



