课时作业34 数列求和与数列的综合应用
一、选择题
1111
1.数列1,2,3,4,…的前n项和为( )
24816121
A.(n+n+2)-n 2211B.n(n+1)+1-n-1 22121C.(n-n+2)-n 221?1?D.n(n+1)+2?1-n? 2?2?
1?1111?11
解析:∵an=n+n,∴Sn=1+2+…+nn=(1+2+3+…+n)+?++…+n?=
2?2242?241?1?
1-n??2?2?1n1+n1121+=n(n+1)+1-n=(n+n+2)-n. 212222
1-2
答案:A
2.在数列{an}中,an=A.2 010 C.2 012 解析:∵an=∴Sn=1-
n12 011
,若{an}的前n项和为,则项数n为( ) n+12 012
B.2 011 D.2 013
n111=-, n+1nn+1
1n2 011==, n+1n+12 012
解得n=2 011. 答案:B
1111
3.数列1×,2×,3×,4×,…的前n项和为( )
248161nA.2-n-n+1 22B.2-
12
n-1
-n 2
n121C.(n+n+2)-n 2211D.(n+1)n+1-n+1 22
11111111解析:∵Sn=1×+2×+3×+…+n×n①,∴Sn=1×2+2×3+…+(n-1)n+
248222221??1?n?1-????2??2??n1111111
n·n+1②.①-②,得Sn=1×+1×+1×+…+n-n·n+1=-n+1, 222482212
1-2
1n∴Sn=2-n-1-n.
22答案:B
4.(2017·赣州摸底)已知数列{an}满足:a1=2,且对任意n,m∈N,都有am+n=am·an,
*
S4
Sn是数列{an}的前n项和,则=( )
S2
A.2 C.4
解析:因为am+n=am·an, 则=
B.3 D.5
S4a1+a2+a3+a4
S2a1+a2
2
a3+a4a1a2+a2
=1+=1+
a1+a2a1+a2
=1+a2=1+a1=5,故选D. 答案:D
5.在数列{an}中,an=n,n∈N,前50个偶数的平方和与前50个奇数的平方和的差是( )
A.0 C.2 525
2
2
2
2
2
2
*
2
B.5 050 D.-5 050
2
2
2
2
2
2
解析:(2+4+…+100)-(1+3+…+99)=(2-1)+(4-3)+…+(100-99)50×3+199
=3+7+11+…+195+199==5 050.
2
答案:B
6.数列{an}满足an+1+(-1)an=2n-1,则数列{an}的前60项和为( ) A.3 690 C.1 845
B.3 660 D.1 830
n解析:当n=2k时,a2k+1+a2k=4k-1,当n=2k-1时,a2k-a2k-1=4k-3,∴a2k+1+a2k-1
=2,∴a2k+1+a2k+3=2,∴a2k-1=a2k+3,即a1=a5=…=a61.∴a1+a2+a3+…+a60=(a2+a3)
30×3+119
2
=30×61=1
+(a4+a5)+…+(a60+a61)=3+7+11+…+(2×60-1)=830.
答案:D 二、填空题
7.已知数列{an}的通项公式为an=(-1)
n+1
(3n-2),则前100项和S100等于________.
解析:∵a1+a2=a3+a4=a5+a6=…=a99+a100=-3,∴S100=-3×50=-150. 答案:-150
8.在等差数列{an}中,a1>0,a10·a11<0,若此数列的前10项和S10=36,前18项和S18
=12,则数列{|an|}的前18项和T18的值是________.
解析:由a1>0,a10·a11<0可知d<0,a10>0,a11<0, ∴T18=a1+…+a10-a11-…-a18 =S10-(S18-S10)=60. 答案:60
9.整数数列{an}满足an+2=an+1-an(n∈N),若此数列的前800项的和是2 013,前813项的和是2 000,则其前2 015项的和为________.
解析:由an+2=an+1-an,得an+2=an-an-1-an=-an-1,易得该数列是周期为6的数列,且an+2+an-1=0,S800=a1+a2=2 013,S813=a1+a2+a3=2 000,
??a3=a2-a1=-13,
∴?
??a2+a1=2 013,??a1=1 013,∴???a2=1 000,
*
,
??a3=-13,
∴???a4=-1 013,
依次可得a5=-1 000,a6=13,
由此可知an+1+an+2+an+3+an+4+an+5+an+6=0, ∴S2 015=S5=-13. 答案:-13
1??1+1?,?11?…,?1+1+1+…+n10.(2017·郑州模拟)若数列{an}是1,…,-1?,?2??1+2+4?,?24
2??????则数列{an}的前n项和Sn=________.
111
解析:an=1+++…+n-1
242
?1?n1-???2??1?==2?1-n?, 1?2?1-2
所以Sn
??1??1??1??=2??1-?+?1-2?+…+?1-n?? ??2??2??2??
?1-1???1?2?2???n-?1-1?? =2?n-=2????1???2???1-2?
nn1
=2n-2+n-1.
21
答案:2n-2+n-1
2三、解答题
11.已知数列{an}中,a1=3,a2=5,且{an-1}是等比数列. (1)求数列{an}的通项公式;
(2)若bn=nan,求数列{bn}的前n项和Tn.
解:(1)∵{an-1}是等比数列且a1-1=2,a2-1=4,∴an-1=2·2
n-1
a2-1
=2, a1-1
=2,∴an=2+1.
n2
3
nn(2)bn=nan=n·2+n,故Tn=b1+b2+b3+…+bn=(2+2×2+3×2+…+n·2)+(1+2+3+…+n).
令T=2+2×2+3×2+…+n·2, 则2T=2+2×2+3×2+…+n·2
2
3
2
3
4
2
3
nnn+1
.
n+1
两式相减,得-T=2+2+2+…+2-n·2∴T=2(1-2)+n·2∵1+2+3+…+n=∴Tn=(n-1)·2
n+1
nn+1
n21-2=
1-2
n-n·2
n+1
,
=2+(n-1)·22
, .
n+1
.
nn+1n2+n+4
2
+
12.正项数列{an}的前n项和Sn满足:Sn-(n+n-1)Sn-(n+n)=0. (1)求数列{an}的通项公式an; (2)令bn=
2
222
n+15*
数列{bn}的前n项和为Tn,证明:对于任意的n∈N,都有Tn<. 22,n+2an64
2
2
2
解:(1)由Sn-(n+n-1)Sn-(n+n)=0,得[Sn-(n+n)](Sn+1)=0,
由于{an}是正项数列,所以Sn+1>0. 所以Sn=n+n(n∈N).
2
*
n≥2时,an=Sn-Sn-1=2n, n=1时,a1=S1=2适合上式,
所以an=2n(n∈N). (2)证明:由an=2n(n∈N). 得bn=
=2
n+22a24nn1n+2
2
2
*
*
n+1
n+1n+2
2
11=[2-16n2
],Tn=
?1-1?+?1-1?+?1-1?+…???????1??3??24??35?1611?+?1-?+?-????n-1n+1???n2
2
2
2
2
2
1
n+2
2
?? ?????
11?
=?1+2-16?2<
1n+1
2
-
1n+2
2
? ??
11?5*
1+2?=(n∈N). ??2?6416?
5*
即对于任意的n∈N,都有Tn<.
64
1.(2016·浙江卷)如图,点列{An},{Bn}分别在某锐角的两边上,且|AnAn+1|=|An+1An+
2
|,An≠An+2,n∈N,|BnBn+1|=|Bn+1Bn+2|,Bn≠Bn+2,n∈N(P≠Q表示点P与Q不重合).若
**
dn=|AnBn|,Sn为△AnBnBn+1的面积,则( )