?
不要充电器的供电技术
对可穿戴设备来说,最大的挑战是如何恰当、方便地为它们持续供电。目前很多手环和手表的设计,都需要用户先把它们脱下来,插到有线充电器上才能充电。我们需要有一种不易被人察觉的方式来对这些设备充电并使用它们。
随着物联网和5G的飞速发展,我们日常使用的智能设备的数量正变得越来越多。现在我们每个人都会用到多种设备,而所有这些设备几乎都需要充电并对电源进行维护。
目前可穿戴市场主要由手环和智能手表所组成。对可穿戴设备来说,最大的挑战是如何恰当、方便地为它们持续供电。对于目前很多的手环和手表设计来说,用户都必须先把它们脱下来,插到有线充电器上才能充电(这也是我不愿再用这类设备的原因)。即使是采用了电磁感应式充电解决方案——比如苹果的iWatch,用户也仍然需要把它们脱下来,放到充电器上去充电。
在我们进化出更多手臂、手指和耳朵等等之前,我们需要有一种不易被人察觉的方式来对这些设备充电并使用。让我们用感觉不到的新方式来为可穿戴设备供电,而让这些不断演进、让人眼前一亮的技术更方便使用吧。
本文将介绍这一领域中的一些最新开发成果,来为大家参考。希望这些成果有助于设计人员开发出业内迫切需要的创新解决方案。
无线供电(尼古拉·特斯拉会赞成)
现在我们几乎所有设备都需要单独充电,因此无线供电肯定会是赢家,也是我在这类应用中的第一选择。
服装级的感应式输电
可穿戴服装可能包含多个智能设备,用它作为配电骨干会很有前途(这方面还有许多研究工作要做)。另外,服装与服装之间的电能传输可以采用双向感应输电技术。参考文献“Garment level power distribution for wearables using inductive power transfer”中选择了基于LCL-LCL拓扑而不是串-串(SS)拓扑的电路,因为SS拓扑负载电流会随着负载(比如电池)变化而变化(见图1)。
图1:无线输电(WPT)设计中所用补偿电路拓扑有四种,这里是其中两种:(a)SS拓扑,(b)LCL-LCL拓扑。
上述电路工作在99kHz,可在智能设备之间实现双向电能交换。
在多个设备之间进行双向电能共享很有意义。某个设备(比如智能手机)的电池容量可能比一些小体积的设备(比如健身追踪器)更大,因此可以用来给这些更小的设备供电。这样,穿戴者可以在给智能手机方便充电的同时,延长那些更小设备的使用时间。
这种方法成功的关键是,这些可穿戴背心或服装是以最不易让人察觉的方式设计。采用用柔性材料制造的馈电线圈来设计是种好方法,见图2和图3。
图2:馈电线圈的理想电路图(a)及其等效电路(b)。
图3:上方是用铜带制作的柔性馈电线圈;下方是早期用24号硬线做的馈电线圈原型。
现在双向输电电路可以基于LCL逆变器来构建,其中,两个反相方波分别输入到四MOSFET逆变器的1号和2号输入端,见图4。
图4:双向感应式电能传输电路。
整个系统构建完成后,图5就是完整的电能共享系统。
不要充电器的供电技术



