好文档 - 专业文书写作范文服务资料分享网站

2024中考数学压轴题全揭秘精品专题18 创新型与新定义综合问题(含答案解析)

天下 分享 时间: 加入收藏 我要投稿 点赞

决胜2024中考数学压轴题全揭秘精品 专题18创新型与新定义综合问题

【考点1】几何综合探究类阅读理解问题

【例1】(2024·甘肃天水)如图1,对角线互相垂直的四边形叫做垂美四边形.

(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由;

(2)性质探究:如图1,四边形ABCD的对角线AC、BD交于点O,AC⊥BD. 试证明:AB2+CD2=AD2+BC2;

(3)解决问题:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连结CE、BG、GE.已知AC=4,AB=5,求GE的长.

【答案】(1)四边形ABCD是垂美四边形.理由见解析.(2)见解析.(3)GE=73. 【解析】(1)四边形ABCD是垂美四边形.理由如下: ∵AB=AD,∴点A在线段BD的垂直平分线上,

∵CB=CD,∴点C在线段BD的垂直平分线上, ∴直线AC是线段BD的垂直平分线, ∴AC⊥BD,即四边形ABCD是垂美四边形; (2)如图1,

∵AC⊥BD,∴∠AOD=∠AOB=∠BOC=∠COD=90°, 由勾股定理得,AB2+CD2=AO2+BO2+DO2+CO2=AD2+BC2, ∴AD2+BC2=AB2+CD2;

(3)连接CG、BE,

∵∠CAG=∠BAE=90°,

∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,

?AG?AC?在△GAB和△CAE中,??GAB??CAE,

?AB?AE?∴△GAB≌△CAE(SAS),

∴∠ABG=∠AEC,又∠AEC+∠AME=90°, ∴∠ABG+∠AME=90°,即CE⊥BG, ∴四边形CGEB是垂美四边形, 由(2)得,CG2+BE2=CB2+GE2,

∵AC=4,AB=5,∴BC=3,CG=42,BE=52, ∴GE2=CG2+BE2-CB2=73,∴GE=73.

【名师点睛】(1)根据垂直平分线的判定定理证明即可;(2)根据垂直的定义和勾股定理解答即可; (3)根据垂美四边形的性质、勾股定理、结合(2)的结论计算.本题考查的是正方形的性质、全等三角形的判定和性质、垂直的定义、勾股定理的应用,正确理解垂美四边形的定义、灵活运用勾股定理是解题的关键.

【变式1-1】(2024·甘肃白银)阅读下面的例题及点拨,并解决问题:

例题:如图①,在等边△ABC中,M是BC边上一点(不含端点B,C),N是△ABC的外角∠ACH的平分线上一点,且AM=MN.求证:∠AMN=60°.

点拨:如图②,作∠CBE=60°,BE与NC的延长线相交于点E,得等边△BEC,连接EM.易证:△ABM≌△EBM(SAS),可得AM=EM,∠1=∠2;又AM=MN,则EM=MN,可得∠3=∠4;由∠3+∠1=∠4+∠5=60°,进一步可得∠1=∠2=∠5,又因为∠2+∠6=120°,所以∠5+∠6=120°,即:∠AMN=60°.

问题:如图③,在正方形A1B1C1D1中,M1是B1C1边上一点(不含端点B1,C1),N1是正方形A1B1C1D1的外角∠D1C1H1的平分线上一点,且A1M1=M1N1.求证:∠A1M1N1=90°.

【答案】见解析.

【解析】延长A1B1至E,使EB1=A1B1,连接EM1、EC1, 如图所示:

则EB1=B1C1,∠EB1M1=90°=∠A1B1M1, ∴△EB1C1是等腰直角三角形, ∴∠B1EC1=∠B1C1E=45°,

∵N1是正方形A1B1C1D1的外角∠D1C1H1的平分线上一点, ∴∠M1C1N1=90°+45°=135°, ∴∠B1C1E+∠M1C1N1=180°, ∴E、C1、N1三点共线,

?A1B1?EB1?在△A1B1M1和△EB1M1中,??A1B1M1??EB1M1,

?BM?BM11?11∴△A1B1M1≌△EB1M1(SAS), ∴A1M1=EM1,∠1=∠2,

∵A1M1=M1N1,∴EM1=M1N1,∴∠3=∠4, ∵∠2+∠3=45°,∠4+∠5=45°,∴∠1=∠2=∠5, ∵∠1+∠6=90°,∴∠5+∠6=90°, ∴∠A1M1N1=180°﹣90°=90°.

【名师点睛】此题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、等腰三角形的判定与性质、三角形的外角性质等知识;本题综合性强,熟练掌握正方形的性质,通过作辅助线构造三角形全等是解本题的关键.

【变式1-2】(2024·湖北咸宁)定义:有一组邻边相等且对角互补的四边形叫做等补四边形.

理解:

(1)如图1,点A,B,C在⊙O上,∠ABC的平分线交⊙O于点D,连接AD,CD. 求证:四边形ABCD是等补四边形; 探究:

(2)如图2,在等补四边形ABCD中,AB=AD,连接AC,AC是否平分∠BCD?请说明理由. 运用:

(3)如图3,在等补四边形ABCD中,AB=AD,其外角∠EAD的平分线交CD的延长线于点F,CD=10,AF=5,求DF的长.

【解析】(1)如图1,∵四边形ABCD为圆内接四边形, ∴∠A+∠C=180°,∠ABC+∠ADC=180°,

?,∴AD=CD, ∵BD平分∠ABC,∴∠ABD=∠CBD,∴?AD?CD∴四边形ABCD是等补四边形;

(2)AD平分∠BCD,理由如下:

如图2,过点A分别作AE⊥BC于点E,AF垂直CD的延长线于点F,

则∠AEB=∠AFD=90°,

∵四边形ABCD是等补四边形,∴∠B+∠ADC=180°, 又∠ADC+∠ADF=180°,∴∠B=∠ADF, ∵AB=AD,∴△ABE≌△ADF(AAS),∴AE=AF, ∴AC是∠BCF的平分线,即AC平分∠BCD;

2024中考数学压轴题全揭秘精品专题18 创新型与新定义综合问题(含答案解析)

决胜2024中考数学压轴题全揭秘精品专题18创新型与新定义综合问题【考点1】几何综合探究类阅读理解问题【例1】(2024·甘肃天水)如图1,对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由;(2)
推荐度:
点击下载文档文档为doc格式
266jw58i9y7dd7d92wae4uc568cqjj01a7g
领取福利

微信扫码领取福利

微信扫码分享