好文档 - 专业文书写作范文服务资料分享网站

函数的单调性教案(获奖)

天下 分享 时间: 加入收藏 我要投稿 点赞

《函数的单调性》教案及设计说明

课 题:函数的单调性

教材:人教版全日制普通高级中学教科书(必修)数学第一册(上)P57—P60

授课教师: 北京景山学校 许云尧

【教学目标】

1.使学生从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法.

2.通过对函数单调性定义的探究,渗透数形结合数学思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力.

3.通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程. 【教学重点】 函数单调性的概念、判断及证明.

【教学难点】 归纳抽象函数单调性的定义以及根据定义证明函数的单调性. 【教学方法】 教师启发讲授,学生探究学习. 【教学手段】 计算机、投影仪. 【教学过程】

一、创设情境,引入课题 课前布置任务:

(1) 由于某种原因,2008年北京奥运会开幕式时间由原定的7月25日推迟到8月8日,请查阅资料说明做出这个决定的主要原因.

(2) 通过查阅历史资料研究北京奥运会开幕式当天气温变化情况. 课上通过交流,可以了解到开幕式推迟主要是天气的原因,北京的天气到8月中旬,平均气温、平均降雨量和平均降雨天数等均开始下降,比较适宜大型国际体育赛事.

下图是北京市今年8月8日一天24小时内气温随时间变化的曲线图.

第1页 共6页

《函数的单调性》教案及设计说明

引导学生识图,捕捉信息,启发学生思考. 问题:观察图形,能得到什么信息?

预案:(1)当天的最高温度、最低温度以及何时达到; (2)在某时刻的温度;

(3)某些时段温度升高,某些时段温度降低.

在生活中,我们关心很多数据的变化规律,了解这些数据的变化规律,对我们的生活是很有帮助的.

问题:还能举出生活中其他的数据变化情况吗? 预案:水位高低、燃油价格、股票价格等.

归纳:用函数观点看,其实就是随着自变量的变化,函数值是变大还是变小. 〖设计意图〗由生活情境引入新课,激发兴趣. 二、归纳探索,形成概念

对于自变量变化时,函数值是变大还是变小,初中同学们就有了一定的认识,但是没有严格的定义,今天我们的任务首先就是建立函数单调性的严格定义.

1.借助图象,直观感知

问题1:分别作出函数y?x?2,y??x?2,y?x2,y?自变量变化时,函数值有什么变化规律?

预案:(1)函数y?x?2在整个定义域内 y随x的增大而增大;函数y??x?2在整个定义域内 y随x的增大而减小.

(2)函数y?x2在[0,??)上 y随x的增大而增大,在(??,0)上y随x的增大而减小. (3)函数y?减小.

引导学生进行分类描述 (增函数、减函数).同时明确函数的单调性是对定义域内某个区间而言的,是函数的局部性质.

问题2:能不能根据自己的理解说说什么是增函数、减函数?

1在(0,??)上 y随x的增大而减小,在(??,0)上y随x的增大而x1的图象,并且观察x第2页 共6页

《函数的单调性》教案及设计说明

预案:如果函数f(x)在某个区间上随自变量x的增大,y也越来越大,我们说函数f(x)在该区间上为增函数;如果函数f(x)在某个区间上随自变量x的增大,y越来越小,我们说函数f(x)在该区间上为减函数.

教师指出:这种认识是从图象的角度得到的,是对函数单调性的直观,描述性的认识.

〖设计意图〗从图象直观感知函数单调性,完成对函数单调性的第一次认识. 2.探究规律,理性认识 问题1:下图是函数y?x?间为增函数和减函数吗?

学生的困难是难以确定分界点的确切位置.

通过讨论,使学生感受到用函数图象判断函数单调性虽然比较直观,但有时不够精确,需要结合解析式进行严密化、精确化的研究.

〖设计意图〗使学生体会到用数量大小关系严格表述函数单调性的必要性. 问题2:如何从解析式的角度说明f(x)?x2在[0,??)为增函数? 预案: (1) 在给定区间内取两个数,例如1和2,因为12<22,所以f(x)?x2在[0,??)为增函数.

(2) 仿(1),取很多组验证均满足,所以f(x)?x2在[0,??)为增函数. (3) 任取x1,x2?[0,??),且x1?x2,因为x1?x2?(x1?x2)(x1?x2)?0,即

222(x?0)的图象,能说出这个函数分别在哪个区xx1?x2,所以f(x)?x2在[0,??)为增函数.

对于学生错误的回答,引导学生分别用图形语言和文字语言进行辨析,使学生认识到问题的根源在于自变量不可能被穷举,从而引导学生在给定的区间内任意取两个自变量x1,x2.

〖设计意图〗把对单调性的认识由感性上升到理性认识的高度,完成对概念的第二次认识.事实上也给出了证明单调性的方法,为证明单调性做好铺垫.

3.抽象思维,形成概念

问题:你能用准确的数学符号语言表述出增函数的定义吗?

师生共同探究,得出增函数严格的定义,然后学生类比得出减函数的定义.

第3页 共6页

22《函数的单调性》教案及设计说明

(1)板书定义 (2)巩固概念 判断题: ①已知f(x)?1,因为f(?1)?f(2),所以函数f(x)是增函数. x②若函数f(x)满足f(2)?f(3),则函数f(x)在区间[2,3]上为增函数. ③若函数f(x)在区间(1,2]和(2,3)上均为增函数,则函数f(x)在区间(1,3)上为增函数.

④因为函数f(x)?11在区间(??,0)和(0,??)上都是减函数,所以f(x)?在xx(??,0)?(0,??)上是减函数.

通过判断题,强调三点:

①单调性是对定义域内某个区间而言的,离开了定义域和相应区间就谈不上单调性.

②对于某个具体函数的单调区间,可以是整个定义域(如一次函数),可以是定义域内某个区间(如二次函数),也可以根本不单调(如常函数).

③函数在定义域内的两个区间A,B上都是增(或减)函数,一般不能认为函数在A?B上是增(或减)函数.

思考:如何说明一个函数在某个区间上不是单调函数?

〖设计意图〗让学生由特殊到一般,从具体到抽象归纳出单调性的定义,通过对判断题的辨析,加深学生对定义的理解,完成对概念的第三次认识.

三、掌握证法,适当延展

2例 证明函数f(x)?x?在(2,??)上是增函数.

x1.分析解决问题 针对学生可能出现的问题,组织学生讨论、交流. 证明:任取x1,x2?(2,??),且x1?x2, 设元

f(x1)?f(x2)?(x1?22)?(x2?) 求差 x1x222?) 变形 x1x2?(x1?x2)?(?(x1?x2)?2(x2?x1)

x1x2第4页 共6页

《函数的单调性》教案及设计说明

?(x1?x2)(1?2) x1x2?(x1?x2)x1x2?2,

x1x2?2?x1?x2, 断号 ∴x1?x2?0,x1x2?2,

∴f(x1)?f(x2)?0,即f(x1)?f(x2),

∴函数f(x)?x?2在(2,??)上是增函数. 定论 x2.归纳解题步骤

引导学生归纳证明函数单调性的步骤:设元、作差、变形、断号、定论. 练习:证明函数f(x)?x在[0,??)上是增函数.

问题:要证明函数f(x)在区间(a,b)上是增函数,除了用定义来证,如果可以证得对任意的x1,x2?(a,b),且x1?x2有

f(x2)?f(x1)?0可以吗?

x2?x1引导学生分析这种叙述与定义的等价性.让学生尝试用这种等价形式证明函数f(x)?x在[0,??)上是增函数.

〖设计意图〗初步掌握根据定义证明函数单调性的方法和步骤.等价形式进一步发展可以得到导数法,为用导数方法研究函数单调性埋下伏笔.

四、归纳小结,提高认识

学生交流在本节课学习中的体会、收获,交流学习过程中的体验和感受,师生合作共同完成小结.

1.小结

(1) 概念探究过程:直观到抽象、特殊到一般、感性到理性. (2) 证明方法和步骤:设元、作差、变形、断号、定论. (3) 数学思想方法和思维方法:数形结合,等价转化,类比等. 2.作业

书面作业:课本第60页 习题2.3 第4,5,6题. 课后探究:

(1) 证明:函数f(x)在区间(a,b)上是增函数的充要条件是对任意的

第5页 共6页

《函数的单调性》教案及设计说明

x,x?h?(a,b),且h?0,有

f(x?h)?f(x)?0.

h (2) 研究函数y?x?1(x?0)的单调性,并结合描点法画出函数的草图. x《函数的单调性》教学设计说明

一、教学内容的分析

函数的单调性是学生在了解函数概念后学习的函数的第一个性质,是函数学习中第一个用数学符号语言刻画的概念,为进一步学习函数其它性质提供了方法依据.

对于函数单调性,学生的认知困难主要在两个方面:(1)要求用准确的数学符号语言去刻画图象的上升与下降,这种由形到数的翻译,从直观到抽象的转变对高一的学生是比较困难的;(2)单调性的证明是学生在函数内容中首次接触到的代数论证内容,而学生在代数方面的推理论证能力是比较薄弱的.根据以上的分析和教学大纲的要求,确定了本节课的重点和难点.

二、教学目标的确定

根据本课教材的特点、教学大纲对本节课的教学要求以及学生的认知水平,从三个不同的方面确定了教学目标,重视单调性概念的形成过程和对概念本质的认识;强调判断、证明函数单调性的方法的落实以及数形结合思想的渗透;突出语言表达能力、推理论证能力的培养和良好思维习惯的养成.

三、教学方法和教学手段的选择

本节课是函数单调性的起始课,采用教师启发讲授,学生探究学习的教学方法,通过创设情境,引导探究,师生交流,最终形成概念,获得方法.本节课使用了多媒体投影和计算机来辅助教学,目的是充分发挥其快捷、生动、形象的特点,为学生提供直观感性的材料,有助于学生对问题的理解和认识.

四、教学过程的设计

为达到本节课的教学目标,突出重点,突破难点,教学上采取了以下的措施: (1)在探索概念阶段, 让学生经历从直观到抽象、从特殊到一般、从感性到理性的认知过程,完成对单调性定义的三次认识,使得学生对概念的认识不断深入.

(2)在应用概念阶段, 通过对证明过程的分析,帮助学生掌握用定义证明函数单调性的方法和步骤.

(3)考虑到我校学生数学基础较好、思维较为活跃的特点,对判断方法进行适当的延展,加深对定义的理解,同时也为用导数研究单调性埋下伏笔.

第6页 共6页

函数的单调性教案(获奖)

《函数的单调性》教案及设计说明课题:函数的单调性教材:人教版全日制普通高级中学教科书(必修)数学第一册(上)P57—P60授课教师:北京景山学校许云尧【教学目标】1.使学生从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法.2.通过对函数单调
推荐度:
点击下载文档文档为doc格式
25l0d940oa3cwgi88zrt
领取福利

微信扫码领取福利

微信扫码分享