2018年高考数学考纲与考试说明解读
专题一:函数、极限与导数的综合问题
(一)不等式、函数与导数部分考查特点分析与建议
类别 年份 全国Ⅰ 全国Ⅱ 全国 Ⅲ 函数导数(文)9.函数的单调性,对称8.复合函数的单调性 性(中心对称,线对称) 14.曲线的切线方程 2017 14.函数的奇偶性 7.函数图像的判定 12.函数的零点综合 16.分段函数解不等式 2016
21.导数,讨论单调性,21.导数 ①单调性 恒成立问题 ②恒成立问题 21.导数①单调性 ②构造函数证明不等式 8.指对数的大小比较 10.函数的定义域值域 7.指对数的大小比较 9.函数图像的判定 12.函数的对称性 16.函数的奇偶性与导数关系(切线问题) 12.函数单调性研究参21.导数 ①切线方程 数取值范围 ②恒成立问题 21.导数①单调性(定义域)②双零点的参数范 围, 21.导数①单调性 ②证明不等式
类别年份2017函数导数(理)2016全国Ⅰ5.抽象函数的单调性,奇偶性,解不等式11.指对数互化(大小比较)21.导数,讨论单调性(超越不等式),双零点条件下的参数取值范围7.函数图像的判断8.指对数的大小比较21.导数,双零点的参数范围,极值点偏移(函数构造)11.函数的极值全国Ⅱ21.导数 ①恒成立求参数范围②虚设零点证明不等式12.函数的图像与性质(对称中心)16.导数公切线问题21.导数 ①单调性(定义域)②虚设零点的最值问题全国 Ⅲ11.函数的零点15.分段函数解不等式21.导数 ①恒成立求参数范围②数列与不等式综合(放缩法)6.指对数的大小比较15.函数的奇偶性与导数关系(切线问题)21.导数(三角函数,复合函数的导数,二次函数,含绝对值的最值问题) 全国课标卷考查内容分析(考什么)
(一)结论:
考查的核心知识为:函数的概念、函数的性质、函数的图象、导数的应用 函数的概念:函数的定义域、值域、解析式(分段函数); 函数的性质:函数的奇偶性、单调性、对称性、周期性; 函数的图象:包含显性与隐性;
导数的应用:导数的概念及其几何意义;利用导数求单调区间、极值、最值 与零点;结合函数的单调性解不等式或证明不等式、求参数范围.
(二)试题题型结构:全国卷基本上是2道选择题或填空题、1道解答题,共3道题.分值为22分.
(三)试题难度定位:全国卷对函数与导数的考查难度相对稳定,选择、填空题中,有一道为中等难度,另一道作为选择、填空的“压轴题”进行考查;解答题均放置于“压轴”位置.
小题考点可总结为八类:
(1)分段函数; (2)函数的性质; (3)基本函数; (4)函数图像; (5)方程的根(函数的零点);(6)函数的最值;
(7)导数及其应用; (8)定积分。
解答题主要是利用导数处理函数、方程和不等式等问题,有一定的难度,往往放在解答题的后面两道题中的一个.纵观近几年全国新课标高考题,常见的考点可分为六个方面:
(1)变量的取值范围问题; (2)证明不等式的问题;
(3)方程的根(函数的零点)问题; (4)函数的最值与极值问题; (5)导数的几何意义问题; (6)存在性问题。
考点:
题型1 函数的概念 例1 有以下判断:
??1 |x|
①f(x)=与g(x)=?
x?-?
xx
表示同一函数;
②函数y=f(x)的图象与直线x=1的交点最多有1个; 22
③f(x)=x-2x+1与g(t)=t-2t+1是同一函数;
??1??④若f(x)=|x-1|-|x|,则f ?f ???=0. ??2??
其中正确判断的序号是________.
题型2 函数的概念、性质、图象和零点(2017年全国新课标Ⅰ卷理科第8题) 例 2、已知函数f?x??x2?2x?aex?1?e?x?1有唯一零点,则a= A. ???111 B. C. D. 1 C 232【解析】函数f?x?的零点满足x2?2x??aex?1?e?x?1, 设g?x??ex?1?x?1???e,则g??x??ex?1?e?x?1?ex?1?1ex?1e2?x?1??1?, x?1e当g??x??0时, x?1;当x?1时, g??x??0,函数g?x?单调递减;
当x?1时, g??x??0,函数g?x?单调递增,当x?1时,函数g?x?取得最小值,为
g?1??2.设h?x??x2?2x,当x?1时,函数h?x?取得最小值,为?1,若?a?0,
函数h?x?与函数?ag?x?没有交点;若?a?0,当?ag?1??h?1?时,函数h?x?和
?ag?x?有一个交点,即?a?2??1,解得a?例3、
1.故选C. 2(2012理科)(10) 已知函数
的图像大致为( )B
1f(x)?;则yln(x?1)?x?f(x)
(1)定义域 (2)奇偶性 (3)对称性 (4)单调性(求导) (5)周期性 (6)特征点 (7)变化趋势
11?xy?,t?ln(x?1)?xt'??1?tx?1x?1
f(1)?0,31f(?)??034?ln44
1.考查角度
(1)以指、对、幂函数为载体考查函数的单调性、奇偶性等性质; (2)考查分段函数的求值以及指数、对数的运算; (3)函数图象的考查主要是函数图象的识别及应用;
(4)高考一般不单独考查函数零点的个数以及函数零点所在区间,有时在导数中考查函数的零点问题;
(5)函数与方程的考查既可以是结合函数零点存在性定理或函数图象判断零点的存在性,也可以是利用函数零点的存在性求参数的值、范围或判断零点所在区间.
2.题型及难易度
选择题或填空题.难度:中等或偏上.
2求函数定义域常见结论:(1)分式的分母不为零;
(2)偶次根式的被开方数不小于零;(3)对数函数的真数必须大于零; (4)指数函数和对数函数的底数大于零且不等于1; (5)正切函数y=tan x,x≠kπ+ (k∈Z); (6)零次幂的底数不能为零;
(7)实际问题中除要考虑函数解析式有意义外,还应考虑实际问题本身的要求.
题型3、函数、方程、不等式及导数的综合应用 例3(2013理科)若函数
=
的最大值是______. 16
的图像关于直线
x??2对称,则
1)?(f3?)a8??f(??法一:???导数求最值问题?f1()?(f5)?b15???法二:f(x?2)?(?x2?4x?3)(x2?4x?3)?16x2?(x2?3)2?g(t)?16t?(t?3)??t?10t?9,?g(t)max?g(5)?1622
知识点:函数的奇偶性、对称性和导数的应用
数学思想:考查转化、数形结合 体现了多角度、多维度、多层次
题型4 函数、方程、不等式及导数的综合应用 例4、已知函数f(x) =x﹣1﹣alnx. (1)若f(x)?0 ,求a的值;
(2)设m为整数,且对于任意正整数n,(1+)(1+1211)(1+)﹤m,求m的最小值. 222n?1??2?12解:(1)f?x?的定义域为?0,+??.①若a?0,因为f??=-+aln2<0,所以不满足题意;②若a>0,由f'x?
??1?ax?a?知,当x??0,a?时,f'?x?<0;当x??a,+??xx