精品文档 用心整理
29. 完成一件工作,需要甲干5天、乙干 6天,或者甲干 7天、乙干2天。问:甲、乙单独干这件工作各需多少天? 解:甲需要(7*3-5)/2=8(天)
乙需要(6*7-2*5)/2=16(天)
30.一水池装有一个放水管和一个排水管,单开放水管5时可将空池灌满,单开排水管7时可将满池水排完。如果放水管开了2时后再打开排水管,那么再过多长时间池内将积有半池水?
31.小松读一本书,已读与未读的页数之比是3∶4,后来又读了33页,已读与未读的页数之比变为5∶3。这本书共有多少页? 解:开始读了3/7 后来总共读了5/8 33/(5/8-3/7)=33/(11/56)=56*3=168页
32.一件工作甲做6时、乙做12时可完成,甲做8时、乙做6时也可以完成。如果甲做3时后由乙接着做,那么还需多少时间才能完成?
解:甲做2小时的等于乙做6小时的,所以乙单独做需要 6*3+12=30(小时) 甲单独做需要10小时 因此乙还需要(1-3/10)/(1/30)=21天才可以完成。
33. 有一批待加工的零件,甲单独做需4天,乙单独做需5天,如果两人合作,那么完成任务时甲比乙多做了20个零件。这批零件共有多少个? 解:甲和乙的工作时间比为4:5,所以工作效率比是5:4 工作量的比也5:4,把甲做的看作5份,乙做的看作4份
资料来源于网络 仅供免费交流使用
精品文档 用心整理
那么甲比乙多1份,就是20个。因此9份就是180个 所以这批零件共180个
34.挖一条水渠,甲、乙两队合挖要6天完成。甲队先挖3天,乙队接着
解:根据条件,甲挖6天乙挖2天可挖这条水渠的3/5 所以乙挖4天能挖2/5
因此乙1天能挖1/10,即乙单独挖需要10天。 甲单独挖需要1/(1/6-1/10)=15天。
35. 修一段公路,甲队独做要用40天,乙队独做要用24天。现在两队同时从两端开工,结果在距中点750米处相遇。这段公路长多少米?
36. 有一批工人完成某项工程,如果能增加 8个人,则 10天就能完成;如果能增加3个人,就要20天才能完成。现在只能增加2个人,那么完成这项工程需要多少天?
解:将1人1天完成的工作量称为1份。调来3人与调来8人相比,10天少完成(8-3)×10=50(份)。这50份还需调来3人干10天,所以原来有工人50÷10-3=2(人),全部工程有(2+8)×10=100(份)。调来2人需100÷(2+2)=25(天)。 37.
解:三角形AOB和三角形DOC的面积和为长方形的50% 所以三角形AOB占32% 16÷32%=50
资料来源于网络 仅供免费交流使用
精品文档 用心整理
38.
解:1/2*1/3=1/6
所以三角形ABC的面积是三角形AED面积的6倍。
39.下面9个图中,大正方形的面积分别相等,小正方形的面积分别相等。问:哪几个图中的阴影部分与图(1)阴影部分面积相等?
解:(2) (4) (7) (8) (9)
40. 观察下列各串数的规律,在括号中填入适当的数
2,5,11,23,47,( ),…… 解:括号内填95
资料来源于网络 仅供免费交流使用
精品文档 用心整理
规律:数列里地每一项都等于它前面一项的2倍减1
41. 在下面的数表中,上、下两行都是等差数列。上、下对应的两个数字中,大数减小数的差最小是几?
解:1000-1=999
997-995=992
每次减少7,999/7=142……5 所以下面减上面最小是5 1333-1=1332 1332/7=190……2 所以上面减下面最小是2 因此这个差最小是2。
42. 如果四位数6□□8能被73整除,那么商是多少? 解:估计这个商的十位应该是8,看个位可以知道是6 因此这个商是86。
43. 求各位数字都是 7,并能被63整除的最小自然数。 解:63=7*9
所以至少要9个7才行(因为各位数字之和必须是9的倍数) 44. 1×2×3×…×15能否被 9009整除? 解:能。
将9009分解质因数 9009=3*3*7*11*13
45. 能否用1, 2, 3, 4, 5, 6六个数码组成一个没有重复数字,且能被11整除的六位数?为什么?
资料来源于网络 仅供免费交流使用
精品文档 用心整理
解:不能。因为1+2+3+4+5+6=21,如果能组成被11整除的六位数,那么奇数位的数字和与偶数位的数字和一个为16,一个为5,而最小的三个数字之和1+2+3=6>5,所以不可能组成。 46. 有一个自然数,它的最小的两个约数之和是4,最大的两个约数之和是100,求这个自然数。 解:最小的两个约数是1和3,最大的两个约数一个是这个自然数本身,另一个是这个自然数除以3的商。
最大的约数与第二大
47.100以内约数个数最多的自然数有五个,它们分别是几? 解:如果恰有一个质因数,那么约数最多的是2=64,有7个约数;
6
如果恰有两个不同质因数,那么约数最多的是2×3=72和2×3=96,各有12个约数;
如果恰有三个不同质因数,那么约数最多的是2×3×5=60,2×3×7=84和2×3×5=90,各有12
个约数。
所以100以内约数最多的自然数是60,72,84,90和96。
48. 写出三个小于20的自然数,使它们的最大公约数是1,但两两均不互质。 解:6,10,15
49. 有336个苹果、 252个桔子、 210个梨,用这些果品最多可分成多少份同样的礼物?在每份礼物中,三样水果各多少?
解:42份;每份有苹果8个,桔子6个,梨5个。 50. 三个连续自然数的最小公倍数是168,求这三个数。
解:6,7,8。 提示:相邻两个自然数必互质,其最小公倍数就等于这两个数的乘积。而相邻三个自然数,若其中只有一个偶数,则其最小公倍数等于这三个数的乘积;若其中有两个偶数,则其最小公倍数等于这三个数乘积的一半。
51. 一副扑克牌共54张,最上面的一张是红桃K。如果每次把最上面的12张牌移到最下面而不改变它们的顺序及朝向,那么,至少经过多少次移动,红桃K才会又出现在最上面?
解:因为[54,12]=108,所以每移动108张牌,又回到原来的状况。又因为每次移动12张牌,所以至少移动108÷12=9(次)。
52. 爷爷对小明说:“我现在的年龄是你的7倍,过几年是你的6倍,再过若干年就分别是你的5倍、4倍、3倍、2倍。”你知道爷爷和小明现在的年龄吗?
2
2
2
325
资料来源于网络 仅供免费交流使用