第八讲 导数的综合应用
2024年
?x2?2ax?2a,x?1,1(2024天津理8)已知a?R,设函数f(x)??若关于x的不等式
x?1,?x?alnx,f(x)…0在R上恒成立,则a的取值范围为
A.0,1 B.0,2 C.0,e D.1,e 解析 当x?1时,f?1??1?2a?2a?1?0恒成立; 当x?1时,f?x??x?2ax?2a厖0?2a2????????x2恒成立, x?12?1?x?1????1?x??2?1?x??1? x2x2令g?x??????x?11?x1?x1?x??1?x????11?2???21?x??2?0, ?????1?x1?x??2所以2a…g?x?max?0,即a?0. 当x?1时,f?x??x?alnx厔0?ax恒成立, lnx1xx?lnx?1, 令h?x??,则h??x??22lnxlnxlnx????lnx?x?当x?e时,h??x??0,h?x?递增,当1?x?e时,h??x??0,h?x?递减, 所以当x?e时,h?x?取得最小值h?e??e. 所以a?h?x?min?e.
综上,a的取值范围是?0,e?.
2.(2024全国Ⅲ理20)已知函数f(x)?2x3?ax2?b. (1)讨论f(x)的单调性; (2)是否存在
a,b,使得f(x)在区间[0,1]的最小值为?1且最大值为1?若存在,求
出a,b的所有值;若不存在,说明理由. 解析(1)f?(x)?6x?2ax?2x(3x?a). 令f?(x)?0,得x=0或x?2a. 3?a??a??x?(??,0)U,??x?f(x)?0若a>0,则当;当故f(x)??时,?0,?时,f?(x)?0.
?3??3?在(??,0),??a??a?
,???单调递增,在?0,?单调递减; ?3??3?
若a=0,f(x)在(??,??)单调递增; 若a<0,则当x????,??a??a??U(0,??)x?f(x)?0时,;当故f(x)??,0?时,f?(x)?0.
3?3??在???,??a??a?,(0,??)单调递增,在??,0?单调递减. 3??3?(2)满足题设条件的a,b存在.
1]单调递增,l]的最小值为f(0)=b,(i)当a≤0时,由(1)知,f(x)在[0,所以f(x)在区间[0,b满足题设条件当且仅当b??1,2?a?b?1,最大值为f(1)?2?a?b.此时a,即a=0,
b??1.
(ii)当a≥3时,由(1)知,f(x)在[0,1]单调递减,所以f(x)在区间[0,1]的最大值为
f(0)=b,b满足题设条件当且仅当2?a?b??1,b=1,最小值为f(1)?2?a?b.此时a,
即a=4,b=1.
a3?a??b,最大值为b(iii)当0
三年高考(2017-2024)理科数学高考真题分类汇总:导数的综合应用



