好文档 - 专业文书写作范文服务资料分享网站

2024年整理形考作业1答案(高等数学基础电大形考作业一)

天下 分享 时间: 加入收藏 我要投稿 点赞

则定义域为?x|x?0或x???1?? 2?⒊在半径为R的半圆内内接一梯形,梯形的一个底边与半圆的直径重合,另一底边的两个端点在半圆上,试将梯形的面积表示成其高的函数. 解:

设梯形ABCD即为题中要求的梯形,设高为h,即OE=h,下底CD=2R (其中,AB为梯形上底,下底CD与半园直径重合,O为园心,E为AB中点)

直角三角形AOE中,利用勾股定理得

AE?OA2?OE2?R2?h2

则上底AB=2AE?2R2?h2 故S?h2R?2R2?h2?hR?R2?h2 2????sin3x. (第4,5,6,7,9的极限还可用洛贝塔法则做)

x?0sin2xsin3xsin3x?3xsin3x3133解:lim?lim3x?lim3x?=??

x?0sin2xx?0sin2xx?0sin2x2122?2x2x2x⒋求limx2?1⒌求lim.

x??1sin(x?1)x2?1(x?1)(x?1)x?1?1?1?lim?lim???2 解:limx??1sin(x?1)x??1sin(x?1)x??1sin(x?1)1x?1⒍求limx?0tan3x. x解:limtan3xsin3x1sin3x11?lim?lim??3?1??3?3

x?0x?0xxcos3xx?03xcos3x11?x2?1⒎求lim.

x?0sinx1?x2?1(1?x2?1)(1?x2?1)x2?lim?lim解:lim2x?0x?0x?0sinx(1?x?1)sinx(1?x2?1)sinx ?limx?0

x(1?x2?1)sinxx?0?0

?1?1??1⒏求lim(x??x?1x). x?3111(1?)x[(1?)?x]?1?1x?1xex?4x?lim?x解:lim( )?lim(x)?lim??ex3x??x?3x??x??33xx??e11?(1?)[(1?)3]3xxx31?x2?6x?8⒐求lim2.

x?4x?5x?4x2?6x?8?x?4??x?2??limx?2?4?2?2

解:lim2?limx?4x?5x?4x?4?x?4??x?1?x?4x?14?13⒑设函数

?(x?2)2,x?1?f(x)??x,?1?x?1

?x?1,x??1?讨论f(x)的连续性,并写出其连续区间. 解:分别对分段点x??1,x?1处讨论连续性 (1)

x??1?x??1?limf?x??limx??1x??1?x??1?limf?x??lim?x?1???1?1?0x??1?x??1?

所以limf?x??limf?x?,即f?x?在x??1处不连续 (2)

x?1?x?1?limf?x??lim?x?2???1?2??1x?1?x?1?22limf?x??limx?1f?1??1

所以limf?x??limf?x??f?1?即f?x?在x?1处连续 x?1?x?1?由(1)(2)得f?x?在除点x??1外均连续 故f?x?的连续区间为???,?1???1,???

2024年整理形考作业1答案(高等数学基础电大形考作业一)

则定义域为?x|x?0或x???1??2?⒊在半径为R的半圆内内接一梯形,梯形的一个底边与半圆的直径重合,另一底边的两个端点在半圆上,试将梯形的面积表示成其高的函数.解:设梯形ABCD即为题中要求的梯形,设高为h,即OE=h,下底CD=2R(其中,AB为梯形上底,下底CD与半园直径重合,O为园心,E为AB中点)直角三角形AOE中,利用勾
推荐度:
点击下载文档文档为doc格式
244585oe6c7b3ef97wu606i7k4ff8500zg5
领取福利

微信扫码领取福利

微信扫码分享