好文档 - 专业文书写作范文服务资料分享网站

优品课件之人教版九年级数学上册全册教案及作业题(带答案)

天下 分享 时间: 加入收藏 我要投稿 点赞

优品课件

人教版九年级数学上册全册教案及作业题(带答案)

《人教版九年级上册全书教案》 第二十一章 二次根式

教材内容 1.本单元教学的主要内容: 二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式. 2.本单元在教材中的地位和作用: 二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础. 教学目标 1.知识与技能 (1)理解二次根式的概念. (2)理解 (a≥0)是一个非负数,( )2=a(a≥0), =a(a≥0). (3)掌握 ? = (a≥0,b≥0), = ? ; = (a≥0,b>0), = (a≥0,b>0). (4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减. 2.过程与方法 (1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.?再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简. (2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,?并运用规定进行计算. (3)利用逆向思维,?得出二次根式的乘(除)法规定的逆向等式并运用它进行化简. (4)通过分析前面的计算和化简结果,抓住它们的共同特点,?给出最简二次根式的概念.利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的. 3.情感、态度与价值观 通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力. 教学重点 1.二次根式 (a≥0)的内涵. (a≥0)是一个非负数;( )2=a(a≥0); =a(a≥0)?及其运用. 2.二次根式乘除法的规定及其运用. 3.最简二次根式的概念. 4.二次根式的加减运算. 教学难点 1.对 (a≥0)是一个非负数的理解;对等式( )2=a(a≥0)及 =a(a≥0)的理解及应用. 2.二次根式的乘法、除法的条件限制. 3.利用最简二次根式的概念把一个二次根式化成最简二次根式. 教学关键 1.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点. 2.培养学生利用二次根式的规定和重要结论进行准确计算的能力,?培养学生一丝不苟的科学精神. 单元课时划

优品课件

分 本单元教学时间约需11课时,具体分配如下: 21.1 二次根式 3课时 21.2 二次根式的乘法 3课时 21.3 二次根式的加减 3课时 教学活动、习题课、小结 2课时

21.1 二次根式 第一课时 教学内容 二次根式的概念及其运用 教学目标 理解二次根式的概念,并利用 (a≥0)的意义解答具体题目. 提出问题,根据问题给出概念,应用概念解决实际问题. 教学重难点关键 1.重点:形如 (a≥0)的式子叫做二次根式的概念; 2.难点与关键:利用“ (a≥0)”解决具体问题. 教学过程 一、复习引入 (学生活动)请同学们独立完成下列三个问题: 问题1:已知反比例函数y= ,那么它的图象在第一象限横、?纵坐标相等的点的坐标是___________. 问题2:如图,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB边的长是__________. 问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_________. 老师点评: 问题1:横、纵坐标相等,即x=y,所以x2=3.因为点在第一象限,所以x= ,所以所求点的坐标( , ). 问题2:由勾股定理得AB= 问题3:由方差的概念得S= . 二、探索新知 很明显 、 、 ,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如 (a≥0)?的式子叫做二次根式,“ ”称为二次根号. (学生活动)议一议: 1.-1有算术平方根吗? 2.0的算术平方根是多少? 3.当a<0, 有意义吗? 老师点评:(略) 例1.下列式子,哪些是二次根式,哪些不是二次根式: 、 、 、 (x>0)、 、 、- 、 、 (x≥0,y??≥0). 分析:二次根式应满足两个条件:第一,有二次根号“ ”;第二,被开方数是正数或0. 解:二次根式有: 、 (x>0)、 、- 、 (x≥0,y≥0);不是二次根式的有: 、 、 、 . 例2.当x是多少时, 在实数范围内有意义? 分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,? 才能有意义. 解:由3x-1≥0,得:x≥ 当x≥ 时, 在实数范围内有意义. 三、巩固练习 教材P练习1、2、3. 四、应用拓展 例3.当x是多少时, + 在实数范围内有意义? 分析:要使 + 在实数范围内有意义,必须同时满足 中的≥0和 中的x+1≠0. 解:依题意,得 由①得:x≥-

优品课件

由②得:x≠-1 当x≥- 且x≠-1时, + 在实数范围内有意义. 例4(1)已知y= + +5,求 的值.(答案:2) (2)若 + =0,求a2004+b2004的值.(答案: ) 五、归纳小结(学生活动,老师点评) 本节课要掌握: 1.形如 (a≥0)的式子叫做二次根式,“ ”称为二次根号. 2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数. 六、布置作业 1.教材P8复习巩固1、综合应用5. 2.选用课时作业设计. 3.课后作业:《同步训练》

第一课时作业设计 一、选择题 1.下列式子中,是二次根式的是( ) A.- B. C. D.x 2.下列式子中,不是二次根式的是( ) A. B. C. D. 3.已知一个正方形的面积是5,那么它的边长是( ) A.5 B. C. D.以上皆不对 二、填空题 1.形如________的式子叫做二次根式. 2.面积为a的正方形的边长为

________. 3.负数________平方根. 三、综合提高题 1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,?底面应做成正方形,试问底面边长应是多少? 2.当x是多少时, +x2在实数范围内有意义? 3.若 + 有意义,则 =_______. 4.使式子 有意义的未知数x有( )个. A.0 B.1 C.2 D.无数 5.已知a、b为实数,且 +2 =b+4,求a、b的值.

第一课时作业设计答案: 一、1.A 2.D 3.B 二、1. (a≥0) 2. 3.没有 三、1.设底面边长为x,则0.2x2=1,解答:x= . 2.依题意得: , ∴当x>- 且x≠0时, +x2在实数范围内没有意义. 3. 4.B 5.a=5,b=-4

21.1 二次根式(2) 第二课时 教学内容 1. (a≥0)是一个非负数; 2.( )2=a(a≥0). 教学目标 理解 (a≥0)是一个非负数和( )2=a(a≥0),并利用它们进行计算和化简. 通过复习二次根式的概念,用逻辑推理的方法推出 (a≥0)是一个非负数,用具体数据结合算术平方根的意义导出( )2=a(a≥0);最后运用结论严谨解题. 教学重难点关键新|课|标|第|一|网 1.重点: (a≥0)是一个非负数;( )2=a(a≥0)及其运用. 2.难点、关键:用分类思想的方法导出 (a≥0)是一个非负数;?用探究的方法导出( )2=a(a≥0). 教学过程 一、复习引入 (学生活动)口答 1.什么叫二次根式? 2.当

优品课件

a≥0时, 叫什么?当a<0时, 有意义吗? 老师点评(略). 二、探究新知 议一议:(学生分组讨论,提问解答) (a≥0)是一个什么数呢? 老师点评:根据学生讨论和上面的练习,我们可以得出 (a≥0)是一个非负数. 做一做:根据算术平方根的意义填空: ( )2=_______;( )2=_______;( )2=______;( )2=_______; ( )2=______;( )2=_______;( )2=_______. 老师点评: 是4的算术平方根,根据算术平方根的意义, 是一个平方等于4的非负数,因此有( )2=4. 同理可得:( )2=2,( )2=9,( )2=3,( )2= ,( )2= ,( )2=0,所以 ( )2=a(a≥0) 例1 计算 1.( )2 2.(3 )2 3.( )2 4.( )2 分析:我们可以直接利用( )2=a(a≥0)的结论解题. 解:( )2 = ,(3 )2 =32?( )2=32?5=45, ( )2= ,( )2= . 三、巩固练习 计算下列各式的值:X|k |b| 1 . c|o |m ( )2 ( )2 ( )2 ( )2 (4 )2 四、应用拓展 例2 计算 1.( )2(x≥0) 2.( )2 3.( )2 4.( )2 分析:(1)因为x≥0,所以x+1>0;(2)a2≥0;(3)a2+2a+1=(a+1)≥0; (4)4x2-12x+9=(2x)2-2?2x?3+32=(2x-3)2≥0. 所以上面的4题都可以运用( )2=a(a≥0)的重要结论解题. 解:(1)因为x≥0,所以x+1>0 ( )2=x+1 (2)∵a2≥0,∴( )2=a2 (3)∵a2+2a+1=(a+1)2 又∵(a+1)2≥0,∴a2+2a+1≥0 ,∴ =a2+2a+1 (4)∵4x2-12x+9=(2x)2-2?2x?3+32=(2x-3)2 又∵(2x-3)2≥0 ∴4x2-12x+9≥0,∴( )2=4x2-12x+9 例3在实数范围内分解下列因式: (1)x2-3 (2)x4-4 (3) 2x2-3 分析:(略) 五、归纳小结 本节课应掌握: 1. (a≥0)是一个非负数; 2.( )2=a(a≥0);反之:a=( )2(a≥0). 六、布置作业 1.教材P8 复习巩固2.(1)、(2) P9 7. 2.选用课时作业设计. 3.课后作业:《同步训练》 第二课时作业设计 一、选择题 1.下列各式中 、 、 、 、 、 ,二次根式的个数是( ). A.4 B.3 C.2 D.1 2.数a没有算术平方根,则a的取值范围是( ). A.a>0 B.a≥0 C.a<0 D.a=0 二、填空题 1.(- )2=________. 2.已知 有意义,那么是一个_______数. 三、综合提高题 1.计算 (1)( )2 (2)-( )2 (3)( )2 (4)(-3 )2 (5) 2.把下列非负数写成一个数的平方的形式: (1)5 (2)3.4 (3) (4)x(x≥0)

优品课件

3.已知 + =0,求xy的值. 4.在实数范围内分解下列因式: (1)x2-2 (2)x4-9 3x2-5

第二课时作业设计答案: 一、1.B 2.C 二、1.3 2.非负数 三、1.(1)( )2=9 (2)-( )2=-3 (3)( )2= ×6= (4)(-3 )2=9× =6 (5)-6 2.(1)5=( )2 (2)3.4=( )2 (3) =( )2 (4)x=( )2(x≥0) 3. xy=34=81 4.(1)x2-2=(x+ )(x- ) (2)x4-9=(x2+3)(x2-3)=(x2+3)(x+ )(x- ) (3)略 优品课件,意犹未尽,知识共享,共创未来!!!

优品课件之人教版九年级数学上册全册教案及作业题(带答案)

优品课件人教版九年级数学上册全册教案及作业题(带答案)《人教版九年级上册全书教案》第二十一章二次根式教材内容1.本单元教学的主要内容:二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式.2.本单元在教材中的地位和作用:二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习
推荐度:
点击下载文档文档为doc格式
23d4l2jcia6bod04q39t7z7sh75lu600ob7
领取福利

微信扫码领取福利

微信扫码分享