平面向量基本定理
平面向量基本定理: 如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2使a= λ1 e1+ λ2 e2我们把不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底。
M
e1ae2O
Aa
BC
N
例题1.已知向量e1,e2,求作向量-2.5e1+3e2DCM例题2.如图平行四边形ABCD的两条对角线相交于点M,b
AB?a,AD?b,用 且 AaB
a,b表示MA,MB,MC和MD练习:已知平行四边形ABCD的两条对角线AC与BD相交于点E,O是任意一点,求证: 例题3.如图
OA,OB不共线,AP?tAB(t?R),用OA,OB表示OPDOC
AEBPBO
Ahttp://www.360doc.com/content/20/0628/08/26387228_920895387.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920895399.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920895417.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920895432.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920895449.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920895468.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920895480.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920895504.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920895522.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920895542.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920895558.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920895569.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920895588.shtml http://www.360doc.com/content/20/0628/08/26387228_920895600.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920895614.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920895633.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920895648.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920895660.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920895677.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920895692.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920895707.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920895721.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920895737.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920895750.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920895767.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920895787.shtml http://www.360doc.com/content/20/0628/08/26387228_920895811.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920895820.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920895846.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920895864.shtml
http://www.360doc.com/content/20/0628/08/26387228_920895877.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920895900.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920895913.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920895930.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920895955.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920895971.shtml
http://www.360doc.com/content/20/0628/08/26387228_920895993.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920896014.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920896029.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920896051.shtml
http://www.360doc.com/content/20/0628/08/26387228_920896076.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920896088.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920896104.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920896120.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920896145.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920896158.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920896176.shtml http://www.360doc.com/content/20/0628/08/26387228_920896186.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920896202.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920896215.shtml http://www.360doc.com/userhome/26387228
http://ggws.360doc.com/