八年级上北师大版第一章勾股定理测试题
一、选择题(每小题3分,共30分)
1. 下列各组中,不能构成直角三角形的是 ( ).
(A)9,12,15 (B)15,32,39 (C)16,30,32 (D)9,40,41
2. 如图1,直角三角形ABC的周长为24,且AB:BC=5:3,则AC= ( ).
(A)6 (B)8 (C)10 (D)12
3. 已知:如图2,以Rt△ABC的三边为斜边分别向外作等腰直角三角形.若斜边AB=3,则图中阴影部分的
面积为 ( ).
(A)9 (B)3 (C)
99 (D) 42 4. 如图3,在△ABC中,AD⊥BC与D,AB=17,BD=15,DC=6,则AC的长为( ).
(A)11 (B)10 (C)9 (D)8 5. 若三角形三边长为a、b、c,且满足等式(a?b)?c?2ab,则此三角形是( ). (A)锐角三角形 (B)钝角三角形 (C)等腰直角三角形 (D)直角三角形
6. 直角三角形两直角边分别为5、12,则这个直角三角形斜边上的高为 ( ).
(A)6 (B)8.5 (C)
222060 (D) 1313 7. 高为3,底边长为8的等腰三角形腰长为 ( ).
(A)3 (B)4 (C)5 (D)6
8. 一只蚂蚁沿直角三角形的边长爬行一周需2秒,如果将直角三角形的边长扩大1倍,那么这只蚂蚁再
沿边长爬行一周需 ( ). (A)6秒 (B)5秒 (C)4秒 (D)3秒
9. 我国古代数学家赵爽“的勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个
大正方形(如图1所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别
是a、b,那么(a?b) 的值为 ( ).
(A)49 (B)25 (C)13 (D)1
10. 如图5所示,在长方形ABCD中,E、F分别是AB、BC上的点,且BE=12,BF=16,则由点E到F的最短距离为 ( ). (A)20 (B)24 (C)28 (D)32 二、填空题(每小题3分,共30分)
11. 写出两组直角三角形的三边长 .(要求都是勾股数) 12. 如图6(1)、(2)中,(1)正方形A的面积为 .
2 (2)斜边x= .
13. 如图7,已知在Rt△ABC中,?ACB?Rt?,AB?4,分别以AC,BC为直径作半圆,面积分
别记为S1,S2,则S1+S2的值等于 .
14. 四根小木棒的长分别为5cm,8cm,12cm,13cm,任选三根组成三角形,其中有 个直角三角形.
15. 如图8,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现直角边沿
直线AD折叠,使它落在斜边AB上,且与AE重合,则CD的长为 .
三、简答题(50分)
16.(8分)如图9,AB=4,BC=3,CD=13,AD=12,∠B=90°,求四边形ABCD的面积.
17.(8分)如图10,方格纸上每个小正方形的面积为1个单位.
(1)在方格纸上,以线段AB为边画正方形并计算所画正方形的面积,解释你的计算方法. (2)你能在图上画出面积依次为5个单位、10个单位、13个单位的正方形吗?
18.(8分)如图11,这是一个供滑板爱好者使用的U型池,该U型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是半径为4m的半圆,其边缘AB=CD=20m,点E在CD上,CE=2m,一滑行爱好者从A点到E点,则他滑行的最短距离是多少?(边缘部分的厚度可以忽略不计,结果取整数)
19.(8分)如图12,飞机在空中水平飞行,某一时刻刚好飞到一男孩子头顶上方4000米处,过了20秒,