好文档 - 专业文书写作范文服务资料分享网站

立体几何中的向量方法-平行与垂直

天下 分享 时间: 加入收藏 我要投稿 点赞

* *

3.2 立体几何中的向量方法 3.2.1 平行与垂直关系

【基础知识在线】

知识点一 空间的方向向量与平面的法向量★★★ 考点:求空间直线的方向向量与平面的法向量 利用方向向量与法向量表示空间角 利用方向向量与法向量表示平行与垂直关系 知识点二 线线、线面、面面平行的向量表示★★★★★ 考点:利用线线、线面、面面平行的向量表示证明平行关系

知识点三 线线、线面、面面垂直的向量表示★★★★★

考点:利用线线、线面、面面垂直的向量表示证明垂直关系

【解密重点·难点·疑点】

问题一:空间的方向向量与平面的法向量

1. 空间中任意一条直线l的位置可以由l上一个定点A以及一个定方向确定.点A是直线l上一点,向量a表示直线l的方向,这个向量a叫做直线的方向向量. 2. 直线l??,取直线l的方向向量a,则向量a称为平面?的法向量.

(1)平面?的一个法向量垂直于与平面?共面的所有向量.

* *

(2)一个平面的法向量有无数个,且它们互相平行. 3.平面的法向量的求法

(1)已知平面的垂线时,在垂线上取一非零向量即可.

(2)已知平面内两不共线向量a??a1,a2,a3?,b??b1,b2,b3?时,常用待定系数法: 设法向量u??x,y,z?,由???a?n?0?a1x?a2y?a3z?0得?在此方程组中,对x,y,z中

??b?n?0,?b1x?b2y?b3z?0,的任一个赋值,求出另两个,所得u即为平面的法向量.利用此方法时,方程组有无数组解,赋得值不同,所得法向量就不同,但它们是共线向量.

4.用向量语言表述线面之间的平行与垂直关系 :

设直线l,m的方向向量分别为a,b,平面?,?的法向量分别为u,v,则 线线平行:l//m?a//b?a?kb,k?R; 即:两直线平行或重合?两直线的方向向量共线. 线线垂直:l?m?a?b?a?b?0; 即:两直线垂直?两直线的方向向量垂直. 线面平行:l//??a?u?a?u?0; 即:直线与平面平行

直线的方向向量与该平面的法向量垂直且直线在平面外.

线面垂直:l???a//u?a?ku,k?R; 即:直线与平面垂直

直线的方向向量与平面的法向量共线

直线的方向向量与平面内

两条不共线直线的方向向量都垂直.

面面平行:?//??u//v?u?kv,k?R; 即:两平面平行?两平面的法向量共线. 面面垂直:????u?v?u?v?0.

* *

即:两平面垂直

两平面的法向量垂直.

问题二:空间中线线、线面、面面平行的向量坐标表示

1. 设直线l,m的方向向量分别为a??a1,a2,a3?,b??b1,b2,b3?,则 线线平行:l//m?a//b?a?kb?a1?ka2,b1?kb2,c1?kc2?k?R?.

2. 设直线l的方向向量分别为a??a1,a2,a3?,平面?的法向量分别为u??b1,b2,b3?, 线面平行:l//??a?u?a?u?0?a1a2?b1b2?c1c2?0. 3.平面?,?的法向量分别为u??a1,a2,a3?,v??b1,b2,b3?,

面面平行:?//??u//v?u?kv?a1?ka2,b1?kb2,c1?kc2,?k?R?.

问题三:空间中线线、线面、面面垂直的向量表示

1.设直线l,m的方向向量分别为a??a1,a2,a3?,b??b1,b2,b3?,则 线线垂直:l?m?a?b?a?b?0?a1a2?b1b2?c1c2?0.

2.设直线l的方向向量分别为a??a1,a2,a3?,平面?的法向量分别为u??b1,b2,b3?, 线面垂直:l???a//u?a?ku?a1?ka2,b1?kb2,c1?kc2,?k?R?. 3.平面?,?的法向量分别为u??a1,a2,a3?,v??b1,b2,b3?, 面面垂直:????u?v?u?v?0?a1a2?b1b2?c1c2?0.

【点拨思维·方法技巧】 一.求平面的法向量

立体几何中的向量方法-平行与垂直

**3.2立体几何中的向量方法3.2.1平行与垂直关系【基础知识在线】知识点一空间的方向向量与平面的法向量★★★考点:求空间直线的方向向量与平面的法向量利用方向向量与法向量表示空间角利用方向向量与法向量表示平行与垂直关系知识点二线线、线面、面面平行
推荐度:
点击下载文档文档为doc格式
22de318w797yogl1itk20zdc523y3q00i1e
领取福利

微信扫码领取福利

微信扫码分享