好文档 - 专业文书写作范文服务资料分享网站

《二次函数概念》教学设计

天下 分享 时间: 加入收藏 我要投稿 点赞

《二次函数的概念》教学设计

这节课是在学生已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。所以这节课在整个教材中具有承上启下的重要作用。 一、教学目标和要求

(1)知识与技能:使学生理解二次函数的概念,掌握根据实际问题列出二次函数关系式的方法,并了解如何根据实际问题确定自变量的取值范围。

(2)过程与方法:复习旧知,通过实际问题的引入,经历二次函数概念的探索过程,提高学生解决问题的能力.

(3)情感、态度与价值观:通过观察、操作、交流归纳等数学活动加深对二次函数概念的理解,发展学生的数学思维,增强学好数学的愿望与信心. 二、重点和难点

1、教学重点:对二次函数概念的理解。

2、教学难点:由实际问题确定函数解析式和确定自变量的取值范围。 三、教法学法设计:

1、从创设情境入手,通过知识再现,展开教学过程 2、从学生活动出发,通过以旧引新,顺势教学过程 3、利用探索、研究手段,通过思维深入,领悟教学过程 四、教学过程:

(一)复习提问

1.什么叫函数?我们之前学过了那些函数? (一次函数,正比例函数,反比例函数) 2.它们的形式是怎样的?

(y=kx+b,k≠0;y=kx ,k≠0;y= , k≠0)

3.一次函数(y=kx+b)的自变量是什么?函数是什么?常量是什么?为什么 1

【设计意图】复习这些问题是为了帮助学生弄清自变量、函数、常量等概念,加深对函数定义的理解.强调k≠0的条件,以备与二次函数中的a进行比较. (二)引入新课

函数是研究两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。看下面三个例子中两个变量之间存在怎样的关系。(电脑演示)

例1、(1)圆的半径是r(cm)时,面积s (cm2)与半径之间的关系是什么? 解:s=πr2(r>0)

例2、用周长为20m的篱笆围成矩形场地,场地面积y(m2)与矩形一边长x(m)之间的关系是什么?

解: y=x(20/2-x)=x(10-x)=-x2+10x (0

例3、设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存。如果存款额是100元,那么请问两年后的本息和y(元)与x之间的关系是什么(不考虑利息税)? 解: y=100(1+x)2

=100(x2+2x+1)

= 100x2+200x+100(0

教师提问:以上三个例子所列出的函数与一次函数有何相同点与不同点? 这个问题有学生小组合作交流,充分讨论完成。

【设计意图】通过具体事例,让学生列出关系式,启发学生观察,思考,归纳出二次函数与一次函数的联系: (1)函数解析式均为整式(这表明这种函数与一次函数有共同的特征)。(2)自变量的最高次数是2(这与一次函数不同)。 (三)学生归纳:

以上函数不同于我们所学过的一次函数,正比例函数,反比例函数,我们就把这种函数称为二次函数。

2

二次函数的定义:形如y=ax+bx+c (a≠0,a, b, c为常数) 的函数叫做二次函数。 (四)巩固练习

1.已知一个直角三角形的两条直角边长的和是10cm。

(1)当它的一条直角边的长为4.5cm时,求这个直角三角形的面积;

2

(2)设这个直角三角形的面积为Scm,其中一条直角边为xcm,求S关 于x的函数关系式。 【设计意图】此题由具体数据逐步过渡到用字母表示关系式,让学生经历由具体到抽象的过程,从而降低学生学习的难度。

23

2.已知正方体的棱长为xcm,它的表面积为Scm,体积为Vcm。 (1)分别写出S与x,V与x之间的函数关系式子; (2)这两个函数中,那个是x的二次函数?

【设计意图】简单的实际问题,学生会很容易列出函数关系式,也很容易分辨出哪个是二次函数。通过简单题目的练习,让学生体验到成功的欢愉,激发他们学习数学的兴趣,建立学好数学的信心。 (五)拓展延伸

2

1. 已知二次函数y=ax+bx+c,当 x=0时,y=0;x=1时,y=2;x= -1时,y=1.求a、b、c,并写出函数解析式.

【设计意图】在此稍微渗透简单的用待定系数法求二次函数解析式的问题,为下节课的教

学做个铺垫。

(六) 小结思考:

本节课你有哪些收获?还有什么不清楚的地方?

【设计意图】让学生来谈本节课的收获,培养学生自我检查、自我小结的良好习惯,将知识进行整理并系统化。而且由此可了解到学生还有哪些不清楚的地方,以便在今后的教学中补充。

(七)布置作业 【设计意图】作业中分为必做题与选做题,实施分层教学,体现新课标 人学有价值的数学,不同的人得

到不同的发展。另外补充第4题,旨在激发学生继续学习二次函数图象的兴趣。 五、教学设计思考 以实现教学目标为前提,

以新课程标准为依据, 以现代信息技术为手段。

贯穿一个原则——以学生为主体的原则, 突出一个特色——充分鼓励表扬的特色, 渗透一个意识——应用数学的意识。 5

《二次函数概念》教学设计

《二次函数的概念》教学设计这节课是在学生已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。所以这节课在整个教材中具有承上启下的重要作用。一、教学目标和要求(1)知识与技能:使学生理解二次函数的概念,掌握根据实际问题列出二次函数关系式的方法
推荐度:
点击下载文档文档为doc格式
21noy0x1k52xn8u9whcj4n25q6nxtf004d1
领取福利

微信扫码领取福利

微信扫码分享