第一部分:
1.下面函数与y?x为同一函数的是( ) A.y?解:令y?f?2x?,反解出x:x?3.设f?x?在???,???有定义,则下列函数为奇函数的是( )
32fx?f?xC.y?xfxA.y?f?x??f??x?B.y?x????????D.y?f??x??f?x???解:?y?xfx选C
32的定义域???,???且y??x????x?fx be??ing3 ar2311??y?,互换x,y位置得反函数y???x?,选A22????xf?x???y?x?∴
24.下列函数在???,???内无界的是( )
A.y?5.数列?xn?有界是limxn存在的( )
n??A 必要条件
ll thin故选D
B 充分条件
gsx?x1解: 排除法:A 有界,B有界,C sinx?cosx?2 ,arctanx???21?x22x2 in1 21?xB.y?arctanx
theirC.y?sinx?cosx
C 充分必要条件
A解:??xn?收敛时,数列xn有界(即xn?M),反之不成立,(如收敛,选A.
nde a6.当n??时,sin211与k为等价无穷小,则k= ( )nnC 2
D -2
tim A
1 2B 1
hing at a11n?limn2?1,k?2 选C解:?limn??n??11nknksin2e g??1??n?11A.y???x?
2B.y?2??x?
1C.y???2x?
2D.y?2??2x?D.y?xsinxD 无关条件
oo2.已知?是f的反函数,则f?2x?的反函数是( )
?有界,但不
d f解:?y?lne?xlne?x,且定义域???,???,
x∴选D
or?x?
2B.y?x2 C.y?elnx D.y?lnex somethin二、填空题(每小题4分,共24分)7.设f?x??1f?x??,则f?的定义域为 ??1?x解: ∵f??f?x????8.设f(x?2)?x?1,则f(x?1)? 解:(1)令x?2?t,f?t??t?4t?5 f?x??x?4x?5229.函数y?log4x?log42的反函数是 2y?1解:(1)y?log4(2x),反解出x:x?4y?42x?1.
10.limnn??解:原式
n??lim3nn?1?n?2lim5(?kn)解:左式=en??ne and A3n2?5212.limsin= n??5n?3n解:?当n??时,
t a tim三、计算题(每小题8分,共64分)13.设f?sinhing a??x???1?cosx 求f?x?2?ll thin?5?11.若lim?1??n???n??kn?e?10,则k? gs in有理化? th?n?1?n?2? ?32.
?e?5k?e?10 故k?2.
3n2?52622lim?= .sin~ ∴原式=n??5n?3nnn5eir be;(2)互换x,y位置,得反函数
.ing(2)f?x?1??(x?1)?4(x?1)?5?x?6x?10.
22 are g2oo∴f??f?x???定义域为(??,?2)?(?2,?1)?(?1,??).
d f1?1?f?x?1?11?x?or1x??11?x2?x somethin解:
x??2x2x??f?sin?2cos?21?sin????
2?2??2??1?f1?x2?.1????.故f?x??2????2???2解: (1)求g(x):?y?互换x,y位置得g(x)?n315.设lim?解:(1)拆项,
*选做题
22ll things?nlim1??(2)原式=lim?1??en??n?1?e?1?n???n?1?n in1?1111?1??11??1??1???????????????1??1?22?3n?n?1??2??23?n?1?nn?1? their1k?1?k11???k?1,2,?,nk(k?1)(k?1)kkk?1 be?1?1116.求lim???????n???1?22?3nn?1????ning3a??n?2a??解: ?lim??lim1????n??n???n?a??n?a?3nn3?en??n?alimna?ea,?ea?8,故a?ln8?3ln2.
?12n?n(n?1)(2n?1)1已知1?2???n?,求lim?3?3???3?n??n?1n?2n?n6??22 ar2?n?2a???8,求a的值。n???n?a? tim12?22???n2且limn??n3?ne a12n212?22???n2?3???3?n?1n?nn3?1t a?limn?n?1?(2n?1)6?n3?n?nd12?22???n2解: ?n3?n An???13hing ae g2oo2x?2 ∴反解出x:xy?y?2x?2x?1x?2(2)f?g?x???lng?x??lnx?2.
??x?2x?2x?y?2y?2d for2?x?1?14.设f?x??lnx,g?x?的反函数g?x??,求f?g?x??x?1 somethin12?22???n2n(n?1)(2n?1)1lim?lim?n??n??n3?16(n3?1)3∴由夹逼定理知,原式???d f2 若对于任意的x,y,函数满足:f?x?y??f?x??f?y?,证明f?y?为奇函数。
or1 3 somethin解 (1)求f0:令
ox?0,y?0,f?0??2f?0??f?0??0og (2)令x??y:f?0??f??y??f?y??f??y???f?y?er?f?y?为奇函数
a 第二部分:
g1. 下列极限正确的( )niA.
limsinxsinxe1x??x?1
B.
limx?x??x?sinx不存在b C.
limx??xsin x?1 limarctanx?rix???2e1ht 解:?lim1x?tsinx??xsinxlimtt?0t n?选C
i 1?sinxsinxs注:Alimgxx??x?0;Blimx??n?1?0?11i?sinx1?0x2. 下列极限正确的是(ht )
1 l1A.
B.
xxlimxl?0?eA?0 xlim?0?e?0 C.
lim(1x?0?cosx)secx?e
1 xlim(1???x)xd?ena1解:?? ?limexx?0??e?1ee??0 ?选A注:B:??,C:2,D:13. 若limx?xf?x???,limg?x???,则下列正确的是
( )
0x?x0A. limx?x?f?x??g?x????? B. lim0?x?x?f?x??g?x??0????D.
D.
timhing at aC. limx?x01?0
f?x??g?x?k?0D. limkf?x????k?0?x?x0x?x0x?x04.若limx?0A.-1 解:?lim?x?0B.0
th?1?xsinx(x?0)??0(x?0)5.设f?x???且limf?x?存在,则a=
x?01?xsin?a(x?0)?x?? beeirC.1
ll thin6.当x?0时,f?x??1?x?1是比x高阶无穷小,则
?agssinx??1???1,limxsin?a?????o?a?a?1 选C .x?0??xx???( )
D.a?1
inA.a?1
aB.a?0 C.a为任意实数
e a?x?7.lim??? x??1?x??解:原式
nd A1ax1?x?12a?10?a?1.故选A?lim解:limx?0?x?0?xxx1?hing at a tim?xlim1???1x??1?xlim?1??e?e?x???x?1?x8.lim?2??1?2?? x?1x?1x?1??ing2t21211x3x?2t3?lim???,?选B解:limlimx?0f?3x?t?0f?2t?3t?0f?2t?323t arD.2
e g( )
A.3 B.
1 3C.2 D.
12oof?2x?x? ?2,则limx?0f?3x?x( )
d for解:?limkf?x??klimf?x??k??? ?选D
somethin