高层建筑结构设计技术分析探讨
【摘要】随着国民经济的快速发展,人民生活水平的不断提高,功能俱全的高层建筑越来越多,下文针对高层建筑结构的设计特点进行了分析及探讨。
【关键词】高层建筑;结构设计
1 常用高层建筑结构体系受力特点分析比较 1.1 框架结构
框架结构体系它是由基础、楼板、柱、梁这4种承重构件所组成的。基础、柱和梁一起构成平面框架是主要的承重结构。框架结构建筑平面布置灵活,可形成较大的建筑空间,建筑立面处理也较方便;整体性、抗震性能好,具有较好的塑性变形能力。但是,框架结构侧向刚度小,当层数过多时,会产生过大的侧移,从而限制了框架结构的建造高度。 1.2 框架——剪力墙结构
高层建筑结构设计中通常采用的是框架——剪力墙结构体系,即把框架和剪力墙两种结构共同组合在一起形成的结构体系,竖向荷载由框架和剪力墙等竖向承重单体共同承担,水平荷载则主要由剪力墙这一具有较大刚度的抗侧力单元来承担。剪力墙的设置,大幅增加了高层建筑结构的抗侧力刚度,使其水平侧向位移大幅减小;同时,框架-剪力墙结构的协同工作使各层层间变形趋于均匀,所以框架——剪力墙结构体系的建筑能建高度要显著高于框架结构。
1.3 剪力墙结构
由墙体承受全部水平作用和竖向荷载的结构体系称为剪力墙结构体系。剪力墙结构体系属于明显的刚性结构,且传力均匀、直接。其结构的强度和刚度都相对较高,但同时也具有一定的延性。结构在台风、地震作用等水平大荷载作用下,结构的侧向位移能有效控制,具有良好的结构整体性能,抗倒塌能力强,其能建高度大幅高于框架或框架——剪力墙结构体系。 1.4 筒体结构
筒体结构体系由筒体为主的结构称为筒体结构。筒体结构体系的高层建筑结构具有非常大的强度和刚度,结构体系中各构件的受力分配合理,抗风、抗震性能相对框架——剪力墙结构、剪力墙结构更强,往往应用于大空间、大跨度要求的高层、超高层建筑结构设计中。
2 高层建筑结构设计关键技术分析 2.1 水平荷载相对于竖向荷载显得更为重要
结构需同时承受竖向和水平荷载,低层结构以抵抗重力为代表的竖向荷载为主,而水平荷载所产生的内力、侧向位移很小。对高层结构来说,随着建筑高度的增加,水平荷载随建筑高度的增高迅速增大。如把建筑物视作简单的竖向悬臂构件,构件中由竖向荷载产生的轴力与高度(h)成正比;水平作用产生的弯矩与高度(h)的平方成正比;水平作用产生的侧向位移则与高度(h)的四次方成正比。对某一高度确定的建筑,结构竖向荷载的大小基本稳定,而水平方
向上风载和地震作用的数值大小往往会随高层建筑结构的动力特性不同而存在较大幅度的变化。可见,水平荷载对高层建筑结构的影响大,侧向位移成为结构设计的主要控制目标之一。 2.2 控制结构侧移是关键因素
与低层建筑结构的设计不同,高层建筑结构的侧移是其结构设计过程中的关键决定性因素。随着建筑高度的不断增加,水平侧向荷载下的结构侧移变形会快速增大。侧向位移过大将使结构产生附加内力,特别是对竖向构件,附加偏心力超过一定限值时,将会引起整个结构的倒塌破坏;同时,在风荷载作用下,如果侧向位移过大,将会引起居住者工作者的不适,在地震作用下,如果侧向位移过大,更会让人感到不安和惊慌。 2.3 结构轴向变形的影响显著
对于高层建筑结构,由于层数多、高度高,轴力很大,从而沿高度逐渐积累的轴向变形很显著高层建筑结构中,一般竖向荷载的数值较大,在柱中会引起较大范围的轴向压缩变形,对结构体系中的连续梁弯矩大小产生显著影响。高层建筑的轴向变形的差异会达到一个比较大的数值,从而引起跨中正弯矩值和端支座负弯矩值增大,连续梁中间支座处的负弯矩值减小。 2.4 结构延性的重要性
高层建筑相对于低层或是多层建筑来说结构更柔一些,受到地震的影响后,结构变化更大一些。所以采取恰当的措施保证结构具有足够的延性,使结构在塑性变形阶段仍然具有较强的变形能力。