不等式的证明方法及其推广
摘要:在初等代数和高等代数中,不等式的证明都占有举足轻重的位置。初等代数中介绍了许多具体的而且相当有灵活性和技巧性的证明方法,例如换元法、放缩法等研究方法;而高等代数中,可以利用的方法更加灵活技巧。我们可以利用典型的柯西不等式的结论来证明类似的不等式;除此还可以利用导数,微分中值定理,泰勒公式,积分中值定理等有关的知识来证明不等式;在正定的情况下,也可以用判别式法;掌握了定积分化为重积分的内容之后,对于某类不等式,也可以将定积分化为重积分,再证明所求的不等式。由此我们可以看到,不等式的求解证明方法并不唯一,但是初等数学里的不等式,都可以用高等数学的知识来解决,解答更为简洁。所以,高等数学对初等数学的教学和学习具有重要的指导意义。本文归纳和总结了一些求解证明不等式的方法与技巧,突出了不等式的基本思想和基本方法,便于更好地了解各部分的内在联系,从总体上把握证明不等式的思想方法;注重对一些着名不等式的推广及应用的介绍。
关键词:不等式;证明方法
1引言
1.1研究的背景
首先,我们要从整个数学,特别是现代数学在21世纪变得更加重要来认识不等式的重要性。美国《数学评论》2000年新的分类中,一级分类已达到63个,主题分类已超过5600多个,说明现代数学已形成庞大的科学体系,并且仍在不断向纵深化发展。它在自然科学、工程技术、国防、国民经济(如金融、管理等)和人文社会科学(如语言学、心理学、历史、文学艺术等)以至我们的日常生活中的应用都在不断深化和发展。它为我们提供了理解信息世界的一种强有力的工具,它也是新世纪公民的文化和科学素质的重要组成部分。而不等式在数学中又处于独特的地位。美国《数学评论》在为匡继昌的《常用不等式》第2版写的长篇评论中指出:“不等式的重要性,无论怎么强调都不会过分。”这说明不等式仍然是十分活跃又富有吸引力的研究领域。
再者不等式的求解和证明一直是高考的热点和难点。近年来高考虽然淡化了单纯的不等式证明的证明题。但是以能力立意的、与证明有关的综合题却频繁出现。常常与函数、数列、三角等综合,考查逻辑推理能力。是高考考查的一项重要内容。而要解决这一点的关键在于掌握常用方法,理解不等式证明中的数学思想,熟练地运用性质和基本不等式。
因此,本文归纳和总结了一些求解证明不等式的方法与技巧,突出了不等式的基本思想和基本方法,便于更好地了解各部分的内在联系,从总体上把握不等式的思想方法;注重对一些着名不等式的推广及应用的介绍,以便更好地理解和运用。 1.2文献综述
数学问题(猜想)的重要性先哲们已有过精辟的阐述。的确,形式优美、新颖、内涵丰富的不等式问题,不仅丰富了我们的研究素材,而且孕育了新思想、新方法的胚芽。当
探索者在艰难的跋涉中感到困倦和乏味时,它就会突然放出奇光异彩,照亮一片天地。人们之所以能孜孜不倦地向未知领域探求,也正是问题那充满诱惑力的深情呼唤。新的东西可以刷新我们的视野。虽然它一开始可能是含糊的、幼稚的、脆弱的,但是只要视野中能映出,那么离抓住它的真谛的日子一定不会遥远了!
由于不等式的多样性,各有各的证明特色,所以我阅读许多文献。许小华的《不等式证明的常用方法》是我参考的第一篇文献。文中介绍了一些常见的证明方法及其在数学竞赛中的应用:分析和综合法、数学归纳法、反证法、函数法、判别式法。由此可知不等式在数学中的地位十分重要,而证明不等式的方法和技巧也很多。所以要掌握好不等式证明,除了要认真理解并能熟练运用不等式的基本性质外,还应当注意观察相关条件与数学其他知识点的联系,充分利用有关知识解决不等式证明问题。陈初良的《不等式证明的两种巧法》就介绍了两种技巧性较高的不等式证明方法:化归函数法、放缩法。本文对这两种方法的介绍非常的精彩。周再禹在《不等式证题中调整法的应用》也给大家展示了不等式证明的一种独特的方法——调整法。而董琳为了拓宽视野,则在《几种证明不等式的妙法》一文中通过实例,介绍了几种切实可行的方法:放缩法证明不等式、反证法、函数法、最值法。除此不少问题还不止用一种方法而需要用几种方法综合使用才能解决。所以翁耀明善于抓住不等式的特点,突破旧例,在《运用概率方法证明某些数学不等式》一文中利用函数的凹凸性,再结合概率中数学期望的不等式性质,恰当地构造一个概率分布密度来证明一些特殊的不等式。
我们知道任何知识体系都不是孤立的,它们相互联系相互渗透,而不同体系的“知识交汇”更能有效地培养学生的综合思维能力。例如:数列与不等式是函数内容的后续知识板块,与函数一样,也都是历年高考的热点。由于在知识网络交汇点设计试题这一命题思想的不断成熟,以数列为载体的不等式证明问题备受高考青睐。以数列为载体的不等式证法虽灵活多变,但极富有挑战性,只要我们善于思考、适时调整、不畏险阻、锲而不舍,其实成功并不遥远,这正体现了高考为选拔优秀人才所精心布置的一个公平舞台。所以证明这类题通常要有一些较为“高超”的放缩技巧。孟利忠则针对这一问题,在《以数列为载体的不等式证明的放缩技巧》中介绍了四种利用数列证明不等式的方法:放缩成递约数列乘积、放缩成相消数列和式、放缩成等差数列和式、放缩成等比数列和式。又如:向量是中学阶段的重要内容,目前大家主要重视向量与三角函数、平面几何、解析几何的“交汇”,用向量证明代数不等式重视不够,缺少系统的研究。一般认为用向量证明不等式就是用向量模的性质来思考问题,实并非如此。张国棣的《用向量证明代数不等式的新探索》对用向量证明代数不等式的方法,进行一些新的探索:(1)利用向量的几何特征构建不等式关系,因为利用向量的加法、减法所构成平行四边形的几何特征来思考问题,可以使证明过程更直观、简捷。(2)用向量有效转化代数不等式,因为用向量搭起代数不等式证明与其他知识体系的桥梁,可实现代数不等式的有效转化,降低思维难度。(3)利用向量的数量积公式,建不等关系证明。因为根据向量的数量积公式ab?abcos?找出不等关系。
这样则增加了向量应用的多样性,将老问题赋予新的生命,是证明方法上的创新,可以使证明过程更加简捷、清晰。
不等式证明既是数学的重要内容之一,也是高等数学的重要工具。许多初等数学中的问题,往往蕴含着数学中的较高层次理论的再实践的问题。如能在教学中有意将高等数学的原理、方法应用于一些初等数学的证明、计算,不仅可以开拓学生的视野,而且可使学生体会到用高等数学的原理、方法解决初等数学问题时,居高临下,驾轻驭熟的感觉,进而了解高等数学与初等数学密不可分的关系。比如:函数的单调极值问题其本身都与不等式密切相联,而微分学中值定理和Taylor公式又使我们能够通过对导数或余项的估计来确定变量间的大小关系,因此常常是证明不等式的得力工具,相对于函数极值概念的局部性,函数的最值则是一种整体的概念,即是在一个固定的区间内有意义的概念,这是和极值概念绝然不同的所在。那么我们如何通过运用导数与微分这样的反映局部性质的概念来研究最值呢?显然我们只能给出一个最值的必要条件,就是一个最值先要是一个极值。这也就是说最值是包含在极值之中的,至于通过极值来找到最值,最终还是必须依靠对可能有的不同极值进行比较。如果极值的数目是有限的。并且不是很多,那么就比较容易得到最值;如果极值是无穷多的,或者是数目极大的,就面临得到最值的困难。因此实际上通过导数的方法来求最值,并没有最终解决问题,而只是在一定的条件下可以得到解决。所以刘海燕在《利用微分学证明不等式》一文中讨论了如何利用微分学证明不等式。而叶殷的《用高等数学证明不等式的若干种方法》则探讨解决了如何将高等数学的原理和方法运用于初等数学,如何解决高等数学与中学数学脱节的问题。并且给出了几种证明方法:利用函数的单调性证明不等式、利用微分中值定理证明不等式、利用函数的极值证明不等式、利用泰勒公式证明不等式、利用函数的凸性证明不等式、利用积分不等式证明不等式、利用定积分的定义证明不等式。魏全顺在《微分在不等式证明中的应用》一文中介绍的不等式的高等证明方法也非常地精彩。高等数学除了可以使学生站在更高的观点上思考问题,同时又可以帮助学生处理初等数学的问题,以达到初等数学与高等数学之间的衔接,刘兴祥在《柯西—施瓦兹不等式的应用》中利用柯西—施瓦兹不等式且巧妙地构造向量?与?解决了部分分式不等式的证明及求极值问题。
不等式的证明方法有很多,而且非常的灵活、精彩。但是着名不等式更是优美而又魅力无限的。正如音乐家能够将很少几组音符变化发展为动听美妙的旋律一样,数学家则往往能够通过不多几步逻辑推理揭示出简明优美的结果。这些有关不等式的结果就是数学家依靠并不复杂的逻辑推理得到的,然而在其来龙去脉被领悟以前,却常常像变戏法似的神秘莫测。胡克在《解析不等式的若干问题》中则介绍了一些非常美丽的不等式及近年来有关的新成果。总之,不等式的内容博大精深,还有很多问题期待我们去挖掘 2证明不等式的方法
2.1初等代数中不等式的证明 2.1.1比较法[1]