好文档 - 专业文书写作范文服务资料分享网站

一元二次方程(篇)(Word版 含解析)

天下 分享 时间: 加入收藏 我要投稿 点赞

一元二次方程(篇)(Word版 含解析)

一、初三数学 一元二次方程易错题压轴题(难)

1.“父母恩深重,恩怜无歇时”,每年5月的第二个星期日即为母亲节,节日前夕巴蜀中学学生会计划采购一批鲜花礼盒赠送给妈妈们.

(1)经过和花店卖家议价,可在原标价的基础上打八折购进,若在花店购买80个礼盒最多花费7680元,请求出每个礼盒在花店的最高标价;(用不等式解答)

(2)后来学生会了解到通过“大众点评”或“美团”同城配送会在(1)中花店最高售价的基础上降价25%,学生会计划在这两个网站上分别购买相同数量的礼盒,但实际购买过程中,“大众点评”网上的购买价格比原有价格上涨上的购买价格比原有价格下降了

5m%,购买数量和原计划一样:“美团”网29m元,购买数量在原计划基础上增加15m%,最终,在2015m%,求出m的值. 2两个网站的实际消费总额比原计划的预算总额增加了【答案】(1)120;(2)20. 【解析】

试题分析:(1)本题介绍两种解法:

解法一:设标价为x元,列不等式为0.8x?80≤7680,解出即可;

解法二:根据单价=总价÷数量先求出1个礼盒最多花费,再除以折扣可求出每个礼盒在花店的最高标价;

(2)先假设学生会计划在这两个网站上分别购买的礼盒数为a个礼盒,表示在“大众点评”网上的购买实际消费总额:120a(1﹣25%)(1+总额:a[120(1﹣25%)﹣的预算总额增加了

5m%),在“美团”网上的购买实际消费29m](1+15m%);根据“在两个网站的实际消费总额比原计划2015m%”列方程解出即可. 2试题解析:(1)解:解法一:设标价为x元,列不等式为0.8x?80≤7680,x≤120; 解法二:7680÷80÷0.8=96÷0.8=120(元). 答:每个礼盒在花店的最高标价是120元;

(2)解:假设学生会计划在这两个网站上分别购买的礼盒数为a个礼盒,由题意得:

59m%)+a[120×0.8(1﹣25%)﹣m](1+15m%)=120×0.8a(

20251591﹣25%)×2(1+ m%),即72a(1+ m%)+a(72﹣ m)(1+15m%)=144a(1+

220215m%),整理得:0.0675m2﹣1.35m=0,m2﹣20m=0,解得:m1=0(舍),m2=20. 2答:m的值是20.

120×0.8a(1﹣25%)(1+

点睛:本题是一元二次方程的应用,第二问有难度,正确表示出“大众点评”或“美团”实际

消费总额是解题关键.

2.随着人们经济收入的不断提高及汽车产业的快速发展,汽车已越来越多地进入普通家庭.据某市交通部门统计,2008年底该市汽车拥有量为75万辆,而截止到2010年底,该市的汽车拥有量已达108万辆.

(1)求2008年底至2010年底该市汽车拥有量的年平均增长率;

(2)为了保护城市环境,缓解汽车拥堵状况,该市交通部门拟控制汽车总量,要求到2012

年底全市汽车拥有量不超过125.48万辆;另据统计,从2011年初起,该市此后每年报废的

汽车数量是上年底汽车拥有量的10%假设每年新增汽车数量相同,请你估算出该市从2011 年初起每年新增汽车数量最多不超过多少万辆.

【答案】解:(1)2008年底至2010年底该市汽车拥有量的年平均增长率是20% (2)从2011年初起每年新增汽车数量最多不超过20万辆 【解析】 【分析】

(1)设年平均增长率x,根据等量关系“2008年底汽车拥有量×(1+年平均增长率)×(1+年平均增长率)”列出一元二次方程求得.

(2)设从2011年初起每年新增汽车的数量y,根据已知得出2011年报废的车辆是2010年底拥有量×10%,推出2011年底汽车拥有量是2010年底拥有量-2011年报废的车辆=2010年拥有量×(1-10%),得出等量关系是: 2010年拥有量×(1-10%)+新增汽车数量]×(1-10%)+新增汽车数量”,列出一元一次不等式求得. 【详解】

解:(1)设该市汽车拥有量的年平均增长率为x. 根据题意,得75(1+x)2=108,则1+x=±1.2 解得x1=0.2=20%,x2=﹣2.2(不合题意,舍去). 答:该市汽车拥有量的年平均增长率为20%.

(2)设全市每年新增汽车数量为y万辆,则2010年底全市的汽车拥有量为

(108×90%+y)万辆,2011年底全市的汽车拥有量为[(108×90%+y)×90%+y]万辆. 根据题意得(108×90%+y)×90%+y≤125.48, 解得y≤20.

答:该市每年新增汽车数量最多不能超过20万辆.

3.机械加工需用油进行润滑以减小摩擦,某企业加工一台设备润滑用油量为90kg,用油的重复利用率为60%,按此计算,加工一台设备的实际耗油量为36kg,为了倡导低碳,减少油耗,该企业的甲、乙两个车间都组织了人员为减少实际油耗量进行攻关. (1)甲车间通过技术革新后,加工一台设备润滑油用油量下降到70kg,用油的重复利用率仍然为60%,问甲车间技术革新后,加工一台设备的实际油耗量是多少千克? (2)乙车间通过技术革新后,不仅降低了润滑油用油量,同时也提高了用油的重复利用

率,并且发现在技术革新前的基础上,润滑用油量每减少1kg,用油的重复利用率将增加1.6%,例如润滑用油量为89kg时,用油的重复利用率为61.6%. ①润滑用油量为80kg,用油量的重复利用率为多少?

②已知乙车间技术革新后实际耗油量下降到12kg,问加工一台设备的润滑用油量是多少千克?用油的重复利用率是多少? 【答案】(1)28(2)①76%②75,84% 【解析】

试题分析:(1)直接利用加工一台设备润滑油用油量下降到70kg,用油的重复利用率仍然为60%,进而得出答案;

(2)①利用润滑用油量每减少1kg,用油的重复利用率将增加1.6%,进而求出答案; ②首先表示出用油的重复利用率,进而利用乙车间技术革新后实际耗油量下降到12kg,得出等式求出答案.

试题解析:(1)根据题意可得:70×(1﹣60%)=28(kg); (2)①60%+1.6%(90﹣80)=76%; ②设润滑用油量是x千克,则 x{1﹣[60%+1.6%(90﹣x)]}=12, 整理得:x2﹣65x﹣750=0, (x﹣75)(x+10)=0, 解得:x1=75,x2=﹣10(舍去), 60%+1.6%(90﹣x)=84%,

答:设备的润滑用油量是75千克,用油的重复利用率是84%. 考点:一元二次方程的应用

4.已知关于x的一元二次方程(x﹣3)(x﹣4)﹣m2=0. (1)求证:对任意实数m,方程总有2个不相等的实数根; (2)若方程的一个根是2,求m的值及方程的另一个根.

【答案】(1)证明见解析;(2)m的值为±2,方程的另一个根是5. 【解析】 【分析】

(1)先把方程化为一般式,利用根的判别式△=b2-4ac证明判断即可;

(2)根据方程的根,利用代入法即可求解m的值,然后还原方程求出另一个解即可. 【详解】 (1)证明:

∵(x﹣3)(x﹣4)﹣m2=0, ∴x2﹣7x+12﹣m2=0,

∴△=(﹣7)2﹣4(12﹣m2)=1+4m2, ∵m2≥0, ∴△>0,

∴对任意实数m,方程总有2个不相等的实数根;

(2)解:∵方程的一个根是2, ∴4﹣14+12﹣m2=0,解得m=±即m的值为±【点睛】

此题主要考查了一元二次方程根的判别式,熟练掌握一元二次方程的根的判别式与根的关系是关键.

当△=b2-4ac>0时,方程有两个不相等的实数根; 当△=b2-4ac=0时,方程有两个相等的实数根; 当△=b2-4ac<0时,方程没有实数根.

∴原方程为x2﹣7x+10=0,解得x=2或x=5,

,方程的另一个根是5.

5.近几年,全社会对空气污染问题越来越重视,空气净化器的销量也在逐年增加.某商场从厂家购进了A,B两种型号的空气净化器,两种净化器的销售相关信息见下表: A型销售数量(台) 5 10 B型销售数量(台) 10 5 总利润(元) 2 000 2 500 (1)每台A型空气净化器和B型空气净化器的销售利润分别是多少?

(2)该公司计划一次购进两种型号的空气净化器共100台,其中B型空气净化器的进货量不少于A型空气净化器的2倍,为使该公司销售完这100台空气净化器后的总利润最大,请你设计相应的进货方案;

(3)已知A型空气净化器的净化能力为300 m3/小时,B型空气净化器的净化能力为200 m3/小时.某长方体室内活动场地的总面积为200 m2,室内墙高3 m.该场地负责人计划购买5台空气净化器每天花费30分钟将室内空气净化一新,如不考虑空气对流等因素,至少要购买A型空气净化器多少台?

【答案】(1)每台A型空气净化器的利润为200元,每台B型空气净化器的利润为100元;(2)为使该公司销售完这100台空气净化器后的总利润最大,应购进A型空气净化器33台,购进B型空气净化器67台;(3)至少要购买A型空气净化器2台. 【解析】

解:(1)设每台A型空气净化器的利润为x元,每台B型空气净化器的利润为y元,根据

5x?10y?2000,x?200,{解得{题意得: 10x?5y?2500.y?100.答:每台A型空气净化器的利润为200元,每台B型空气净化器的利润为100元. (2)设购买A型空气净化器m台,则购买B型空气净化器(100﹣m)台, ∵B型空气净化器的进货量不少于A型空气净化器的2倍, ∴100-m≥2m, 解得:m≤

100. 3

设销售完这100台空气净化器后的总利润为W元. 根据题意,得W=200m+100(100﹣m)=100m+10000. ∵要使W最大,m需最大,

∴当m=33时,总利润最大,最大利润为W:100×33+10000=13300(元). 此时100﹣m=67.

答:为使该公司销售完这100台空气净化器后的总利润最大,应购进A型空气净化器33台,购进B型空气净化器67台.

(3)设应购买A型空气净化器a台,则购买B型空气净化器(5﹣a)台,根据题意得:

1 [300a+200(5-a)]≥200×3. 2解得:a≥2.

∴至少要购买A型空气净化器2台.

6.(本题满分10分)如图,在平面直角坐标系中,直线AB与x轴、y轴分别交于点A、B,直线CD与x轴、y轴分别交于点C、D,AB与CD相交于点E,线段OA、OC的长是一元二次方程-18x+72=0的两根(OA>OC),BE=5,tan∠ABO=.

(1)求点A,C的坐标;

(2)若反比例函数y=的图象经过点E,求k的值;

(3)若点P在坐标轴上,在平面内是否存在一点Q,使以点C,E,P,Q为顶点的四边形是矩形?若存在,请写出满足条件的点Q的个数,并直接写出位于x轴下方的点Q的坐标;若不存在,请说明理由.

【答案】(1)、A(12,0),C(﹣6,0);(2)、k=36;(3)、6个;Q1(10,﹣12),Q2(﹣3,6﹣3【解析】

试题分析:(1)、首先求出方程的解,根据OA>OC求出两点的坐标;(2)、根据∠ABO的正切值求出OB的长度,根据Rt△AOB得出AB的长度,作EM⊥x轴,根据三角形相似得出点E的坐标,然后求出k的值;(3)、分别以CE为矩形的边,在点C、E处设计直角,垂线与两坐标轴相交,得到点P,进而得到点Q;以CE为矩形对角线,则以CE的中点为圆心做圆,与两坐标轴相交,得到点P,再得点Q.

).

一元二次方程(篇)(Word版 含解析)

一元二次方程(篇)(Word版含解析)一、初三数学一元二次方程易错题压轴题(难)1.“父母恩深重,恩怜无歇时”,每年5月的第二个星期日即为母亲节,节日前夕巴蜀中学学生会计划采购一批鲜花礼盒赠送给妈妈们.(1)经过和花店卖家议价,可在原标价的基础上打八折购进,若在花店购买80个礼盒最多花费7680元,请求出每个
推荐度:
点击下载文档文档为doc格式
20trc2ixgz9pugm7qnnb9acj39qq6000egs
领取福利

微信扫码领取福利

微信扫码分享