好文档 - 专业文书写作范文服务资料分享网站

计量经济学第四章经典单方程计量经济学模型:放宽基本假定的模型

天下 分享 时间: 加入收藏 我要投稿 点赞

第四章 经典单方程计量经济学模型:放宽基本假定的模型

一、内容提要

本章主要介绍计量经济模型的二级检检验问题,即计量经济检验。主要讨论对回归模型的若干基本经典假定是否成立进行检验、当检验发现不成立时继续采用OLS估计模型所带来的不良后果以及如何修正等问题。具体包括异方差性问题、序列相关性问题、多重共线性问题以及随机解释变量这四大类问题。

异方差是模型随机扰动项的方差不同时产生的一类现象。在异方差存在的情况下,OLS估计尽管是无偏、一致的,但通常的假设检验却不再可靠,这时仍采用通常的t检验和F检验,则有可能导致出现错误的结论。同样地,由于随机项异方差的存在而导致的参数估计值的标准差的偏误,也会使采用模型的预测变得无效。对模型的异方差性有若干种检测方法,如图示法、Park与Gleiser检验法、Goldfeld-Quandt检验法以及White检验法等。而当检测出模型确实存在异方差性时,通过采用加权最小二乘法进行修正的估计。

序列相关性也是模型随机扰动项出现序列相关时产生的一类现象。与异方差的情形相类似,在序列相关存在的情况下,OLS估计量仍具无偏性与一致性,但通常的假设检验不再可靠,预测也变得无效。序列相关性的检测方法也有若干种,如图示法、回归检验法、Durbin-Watson检验法以及Lagrange 乘子检验法等。存在序列相关性时,修正的估计方法有广义最小二乘法(GLS)以及广义差分法。

多重共线性是多元回归模型可能存在的一类现象,分为完全共线与近似共线两类。模型的多个解释变量间出现完全共线性时,模型的参数无法估计。更多的情况则是近似共线性,这时,由于并不违背所有的基本假定,模型参数的估计仍是无偏、一致且有效的,但估计的参数的标准差往往较大,从而使得t-统计值减小,参数的显著性下降,导致某些本应存在于模型中的变量被排除,甚至出现参数正负号方面的一些混乱。显然,近似多重共线性使得模型偏回归系数的特征不再明显,从而很难对单个系数的经济含义进行解释。多重共线性的检验包括检验多重共线性是否存在以及估计多重共线性的范围两层递进的检验。而解决多重共线性的办法通常有逐步回归法、差分法以及使用额外信息、增大样本容量等方法。

当模型中的解释变量是随机解释变量时,需要区分三种类型:随机解释变量与随机扰动项独立,随机解释变量与随机扰动项同期无关、但异期相关,随机解释变量与随机扰动项

1 / 1

同期相关。第一种类型不会对OLS估计带来任何问题。第二种类型则往往导致模型估计的有偏性,但随着样本容量的增大,偏误会逐渐减小,因而具有一致性。所以,扩大样本容量是克服偏误的有效途径。第三种类型的OLS估计则既是有偏、也是非一致的,需要采用工具变量法来加以克服。

1 / 1

二、典型例题分析

1、下列哪种情况是异方差性造成的结果? (1)OLS估计量是有偏的

(2)通常的t检验不再服从t分布。

(3)OLS估计量不再具有最佳线性无偏性。 解答: 第(2)与(3)种情况可能由于异方差性造成。异方差性并不会引起OLS估计量出现偏误。

2、已知模型

Yt??0??1X1t??2X2t?ut Var(ut)??t2??2Zt2

式中,Y、X1、X2和Z的数据已知。假设给定权数wt,加权最小二乘法就是求下式中的各β,以使的该式最小

RSS??(wtut)2??(wtYt??0wt??1wtX1t??2wtX2t)2

(1)求RSS对1、2和2的偏微分并写出正规方程。 (2)用Z去除原模型,写出所得新模型的正规方程组。

(3)把wt?1/Zt带入(1)中的正规方程,并证明它们和在(2)中推导的结果一样。 解答: (1)由RSS?22(wu)?(wY??w??wX??wX)?tt?tt0t1t1t2t2t对各β求偏导得如

下正规方程组:

?(wY??wtt0tt0t??1wtX1t??2wtX2t)wt?0 ??1wtX1t??2wtX2t)wtX1t?0 ??1wtX1t??2wtX2t)wtX1t?0?(wY??w?(wY??wtt0tt

计量经济学第四章经典单方程计量经济学模型:放宽基本假定的模型

第四章经典单方程计量经济学模型:放宽基本假定的模型一、内容提要本章主要介绍计量经济模型的二级检检验问题,即计量经济检验。主要讨论对回归模型的若干基本经典假定是否成立进行检验、当检验发现不成立时继续采用OLS估计模型所带来的不良后果以及如何修正等问题。具体包括异方差性问题、序列相关性问题、多重共线性问题以及随机解释变量这四大
推荐度:
点击下载文档文档为doc格式
20eby39xcv75cln2z0an3ef8l940oa007tx
领取福利

微信扫码领取福利

微信扫码分享