基于窗函数的FIR高通数字滤波器设计 摘要
无限长脉冲数字滤波器的设计方法只考虑了幅度特性,没有考虑相位特性,所设的滤波器一般是某种确定的非线性相位特性。有限脉冲响应(FIR)滤波器在保证了幅度特性满足技术要求的同时,很容易做到有严格的线性相位特性。
本课题利用MATLAB软件实现。MATLAB是“矩阵实验室”(MATrix LABoratoy)的缩写,是一种科学计算软件,它使用方便,输入简捷,运算高效,内容丰富,因此利用MATLAB软件,通过一系列较为系统的函数法,根据已知的技术指标,就可以设计出满足要求的滤波器。
关键字:MATLAB;窗函数;FIR带阻数字滤波器;线性相位
目录
1. FIR滤波器简介 3
1.1 FIR的特点 3
2.2线性相位 4
2.主要设计内容 4
3.窗函数 5
3.1常用窗函数 5
3.2窗函数的指标 8
4应用窗函数法设计 FIR 数字滤波器的步骤 9
4.1数字高通滤波器的设计: 9
4.2 Matlab仿真结果 10
总结 12
致谢 13
参考文献 14
1 FIR滤波器简介
数字滤波器是一种用来过滤时间离散信号的数字系统,通过对抽样数据进行数学处理来达到频域滤波的目的。根据其单位冲激响应函数的时域特性可分为两类:无限冲激响应(IIR)滤波器和有限冲激响应(FIR)滤波器[1]。
1.1 FIR的特点
FIR滤波器的主要优点为:系统总是稳定的,FIR 滤波器的系统函数可以表示为
(2-1)
易知,H(z) 在 Z 平面上有 N-1个零点,z=0 是 N-1 阶极点,因此FIR 系统总是稳定的(极点都在单位圆内)。FIR 滤波器的优点之二:容易实现线性相位。当 FIR 系统的单位冲激响应满足 时,该系统具有线性相
位。
(N为奇数) (2-2)
(N为偶数) (2-3)
FIR 滤波器的优点之三:允许设置多通带(或多阻带)滤波器。FIR 滤波器的优点之四:FIR 滤波器可以采用 FFT 方法实现其功能,从而大大提高效率。FIR 滤波器的缺点:由于 FIR 系统只有零点,因此这类系统不像FIR 滤波器不像 IIR 滤波器那样容易取得比较好的通带与阻带衰减特性。要取得较好的衰减特性,一般要求 H(z) 的阶次较高。综合起来看, FIR 滤波器具有IIR 滤波器没有的许多特点,得到了越来越广泛的应用。
FIR滤波器的设计方法主要有三种:a.窗函数设计法;b.频率抽样发;c.最小平法抽样法;这里我主要讨论在MATLAB环境下通过调用信号分析与处理工具箱的几类窗函数来设计滤波器并分析与比较其性能
2.2 线性相位
一个单一频率的正弦信号通过一个系统,假设它通过这个系统的时间需要t,则这个信号的输出相位落后原来信号wt的相位。从这边可以看出,一个正弦信号通过一个系统落后的相位等于它的w*t;反过来说,如果一个频率为w的正弦信号通过系统后,它的相位落后delta,则该信号被延迟了delta/w的时间。在实际系统中,一个输入信号可以分解为多个正弦信号的叠加,为了使得输出信号不会产生相位失真,必须要求它所包含的这些正弦信号通过系统的时间是一样的。因此每一个正弦信号的相位分别落后,w1*t,w2*t,w3*t。因此,落后的相位正比于频率w,如果超前,超前相位的大小也是正比于频率w。从系统的频率响应来看,就是要求它的相频特性是一条直线。在FIR滤波器的设计中,为了得到线性相位的性质,通常利用实偶对称序列的相频特性为常数0和实奇对称序列为相频特性为常数90度的特点。因此得到的是对称序列,不是因果序列,是不可实现系统,为了称为物理可实现系统,需要将它向右移动半个周期,这就造成了相移特性随时间的变化,同时也是线性变化。