?1
( )
?3?A.?,+∞? ?6?
B.(0,e21) C.(e-11,e)
D.(0,e11)
8.(2010·福建厦门一中)如图所示,在一个长为π,宽为2的矩形OABC内,曲线y=sinx(0≤x≤π)
1
与x轴围成如图所示的阴影部分,向矩形OABC内随机投一点(该点落在矩形OABC内任何一点是等可能的),则所投的点落在阴影部分的概率是( )
1
A.π
2
B.π
3
C.π
πD.4
x+2?-2≤x<0???
9.(2010·吉林质检)函数f(x)=?π
2cosx?0≤x≤?2??3
A.2
B.1
C.4
1D.2
的图象与x轴所围成的图形面积S为( )
10.(2010·沈阳二十中)设函数f(x)=x-[x],其中[x]表示不超过x的最大整数,如[-1.2]=-2,
x
[1.2]=1,[1]=1.又函数g(x)=-3,f(x)在区间(0,2)上零点的个数记为m,f(x)与g(x)的图象交点的个数记为n,则?ng(x)dx的值是( )
?m5A.-2
45
B.-3 C.-4
7D.-6
11.(2010·江苏盐城调研)甲、乙两人进行一项游戏比赛,比赛规则如下:甲从区间[0,1]上随机
等可能地抽取一个实数记为b,乙从区间[0,1]上随机等可能地抽取一个实数记为c(b、c可以相等),若关于x的方程x2+2bx+c=0有实根,则甲获胜,否则乙获胜,则在一场比赛中甲获胜的概率为( ) 1
A.3
2 B.3
1
C.2
3D.4
12.(2010·吉林省调研)已知正方形四个顶点分别为O(0,0),A(1,0),B(1,1),C(0,1),曲线y=x2(x≥0)与x轴,直线x=1构成区域M,现将一个质点随机地投入正方形中,则质点落在区域M内的概率是( ) 1
A.2
11B.4 C.3
2D.5
二、填空题
13.(2010·芜湖十二中)已知函数f(x)=3x2+2x+1,若?1-1f(x)dx=2f(a)
?
成立,则a=________.
π1
14.已知a=∫20(sinx+cosx)dx,则二项式(ax-)6的展开式中含x2项的系数是________.
x
2
15.抛物线y2=2x与直线y=4-x围成的平面图形的面积为________.
4
16.(2010·安徽合肥质检)抛物线y2=ax(a>0)与直线x=1围成的封闭图形的面积为,若直线l
3
与抛物线相切且平行于直线2x-y+6=0,则l的方程为______.
17.(2010·福建福州市)已知函数f(x)=-x3+ax2+bx(a,b∈R)的图象如图所示,它与x轴在原点处相切,且x轴与函数图象所围成区域(图中阴影部分)的面积为1
12,则a的值为________.
三、解答题
18.如图所示,在区间[0,1]上给定曲线y=x2,试在此区间内确定t的值,使图中阴影部分的面
积S1+S2最小.
3