好文档 - 专业文书写作范文服务资料分享网站

2024年高考全国卷2理科数学及答案(word精校版可以编辑)

天下 分享 时间: 加入收藏 我要投稿 点赞

2024年普通高等学校招生全国统一考试

全国卷2理科数学

考试时间:2024年6月7日15:00——17:00

使用省份:甘肃、青海、内蒙古、黑龙江、吉林、辽宁、宁夏、新疆、陕

西、重庆、海南

本试卷分第I卷(选择题)和第卷(非选择题)两部分,满分150分,考试时间120分钟。

注意事项:

1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写

的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。 5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

第Ⅰ卷

(选择题,共60分)

1 / 14

一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个

选项中,只有一项是符合题目要求的. 1.设集合{2-56>0},{ 1<0},则A∩ A.(-∞,1) C.(-3,-1)

B.(-2,1) D.(3,+∞)

2.设3+2i,则在复平面内对应的点位于 A.第一象限 C.第三象限 3.已知A.-3 C.2

=(2,3),

=(3,t),

B.第二象限 D.第四象限 =1,则

=

B.-2 D.3

4.2024年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日点的轨道运行.点是平衡点,位于地月连线的延长线上.设地球质量为M1,月球质量为M2,地月距离为R,点到月球的距离为r,根据牛顿运动定律和万有引力定律,r满足方程:

.

,由于的值很小,因此在近似计算中

,则r的

近似值为

2 / 14

A.C.

B.D.

5.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是 A.中位数 C.方差 6.若a>b,则

A.(a?b)>0 C.a3?b3>0

B.3a<3b D.│a│>│b│ B.平均数 D.极差

7.设α,β为两个平面,则α∥β的充要条件是

A.α内有无数条直线与β平行 B.α内有两条相交直线与

β平行

C.α,β平行于同一条直线 D.α,β垂直于同一平面 8.若抛物线y2=2(p>0)的焦点是椭圆

A.2 C.4

的一个焦点,则 B.3 D.8

9.下列函数中,以为周期且在区间(,)单调递增的是

A.f(x)=│ 2x│ C.f(x)│x│

B.f(x)=│ 2x│ D.f(x)= │x│

3 / 14

10.已知α∈(0,),2 2α 2α+1,则 α=

A. C.

B.D.

11.设F为双曲线C:的右焦点,为坐标原点,以

直径的圆与圆交于P,Q两点.若A. B. C.2 D. 12.设函数的定义域为R,满足,且当

若对任意A.C.

第Ⅱ卷

(非选择题,共90分)

,都有

,则C的离心率为

时,

.

,则m的取值范围是 B.D.

二、填空题:本题共4小题,每小题5分,共20分.

13.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有

10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为. 14.已知是奇函数,且当时,.若,则. 15.

的内角

的对边分别为

.若

,则

的面

积为.

16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为

长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48

4 / 14

的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有个面,其棱长为.(本题第一空2分,第二空3分.)

三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答.第22、23为选考题,考生根据要求作答.

(一)必考题:共60分。 17.(12分)

如图,长方体–A1B1C1D1的底面是正方形,点E在棱1上,⊥1.

(1)证明:⊥平面1C1;

(2)若1E,求二面角B––C1的正弦值. 18.(12分)

11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的

5 / 14

2024年高考全国卷2理科数学及答案(word精校版可以编辑)

2024年普通高等学校招生全国统一考试全国卷2理科数学考试时间:2024年6月7日15:00——17:00使用省份:甘肃、青海、内蒙古、黑龙江、吉林、辽宁、宁夏、新疆、陕西、重庆、海南本试卷分第I卷(选择题)和第卷(非选择题)两部分,满分150分,考试时间120分钟。注意事项:1.
推荐度:
点击下载文档文档为doc格式
205071hvqm9pg7z7hdvh6c4rp7oypx00so2
领取福利

微信扫码领取福利

微信扫码分享