第三章 整式及其加减
4 整式的加减 第2课时 去括号
1. 下去括号: (1)-(2m-3); (2)n-3(4-2m); (3)16a-8(3b+4c); 11
(4)-(x+y)+(p+q);
23
(5)-8(3a-2ab+4); (6)4(m+p)-7(n-2q).
解:(1)-(2m-3)=-2m+3; (2)n-3(4-2m)=n-12+6m;
(3)16a-8(3b+4c)=16a-24b-32c; 111111(4)-(x+y)+(p+q)=-x-y+p+q;
232233
(5)-8(3a-2ab+4)=-24a+16ab-32; (6)4(m+p)-7(n-2q)=4m+4p-7n+14q.
22
2. 化简:2x-2[3x-2(-x+2x-1)-4].
22
解:(方法一)2x-2[3x-2(-x+2x-1)-4]
22
=2x-[6x-4(-x+2x-1)-8]
22
=2x-6x+4(-x+2x-1)+8
22
=2x-6x-4x+8x-4+8
2
=-2x+2x+4.
22
(方法二)2x-2[3x-2(-x+2x-1)-4]
22
=2x-2(3x+2x-4x+2-4)
22
=2x-2(2x-x-2)
22
=2x-4x+2x+4
2
=-2x+2x+4.
223223
3. 化简求值:-5ab+3(3b-ab)-2(-2ab+3b-ab),其中a=-1,b=2.
223223
解:-5ab+3(3b-ab)-2(-2ab+3b-ab)
223223
=-5ab+9b-3ab+4ab-6b+2ab
223
=-ab+3b-ab, 当a=-1,b=2时,
223
原式=-(-1)×2+3×2-(-1)×2 =-2+12+2=12.
4.化简-16(x-0.5)的结果是( D ) A.-16x-0.5 B.16x+0.5 C.16x-8 D.-16x+8 5.去掉下列各式中的括号:
(1)(a+b)+(c+d)=__a+b+c+d__; (2)(a-b)-(c-d)=__a-b-c+d__; (3)-(a+b)+(c-d)=__-a-b+c-d__;
(4)-(a-b)-(c-d)=__-a+b-c+d__; (5)(a+b)-3(c-d)=__a+b-3c+3d__; (6)(a+b)+5(c-d)=__a+b+5c-5d__; (7)(a-b)-2(c+d)=__a-b-2c-2d__;
(8)(a-b-1)-3(c-d+2)=__a-b-3c+3d-7__; (9)0-(x-y-2)=__-x+y+2__. 6.下列各式中,去括号正确的是( D ) A.5(a+b)=5a+b B.-(a-3)=-a-3
1?1?C.2?-m+?=-2m+ 2?4?D.-3(a-1)=-3a+3
7.下列各式中,去括号正确的是( D ) A.x+2(y-1)=x+2y-1 B.x-2(y-1)=x+2y+2 C.x-2(y-1)=x-2y-2 D.x-2(y-1)=x-2y+2
8.计算-3(x-2y)+4(x-2y)的结果是( A ) A.x-2y B.x+2y C.-x-2y D.-x+2y
9.化简(3m-5)-(n-3m)的结果是( A ) A.6m-n-5 B.6m+n-5 C.-n-5 D.-5+n
10.下列去括号的过程: ①a-(b-c)=a-b-c; ②a-(b-c)=a+b+c; ③a-(b+c)=a-b+c; ④a-(b+c)=a-b-c.
其中运算结果错误的个数为( C ) A.1 B.2 C.3 D.4
11.a-b-c的相反数是__-a+b+c__. 12.计算:
22
(1)2ab-(4ab-3ab)=__-2ab+3ab__;
22222
(2)(3a+b-5ab)+(4ab-b+7a)=__10a-ab__; (3)-(m-2n)-(-m+n)=__n__;
222
(4)(7a-7ab-6)+(2-4a)=__3a-7ab-4__. 13.化简:
(1)2x+7y+(4x-3y)-(2x-5y); 解:原式=2x+7y+4x-3y-2x+5y =(2+4-2)x+(7-3+5)y
=4x+9y.
35?23?1513255
(2)(2a-3b)-4?a-ab+2ab-b?.
24??2解:原式=2a-3b-2a+2ab-8ab+3b
553223
=(2-2)a+(-3+3)b+2ab-8ab
3223
=2ab-8ab.
122
14.化简并求值:4(x-1)-2(x+1)-(4x-2x),其中x=2.
2
解:原式=4x-4-2x-2-2x+x
2
=-4x+5x-6,
当x=2时,原式=-16+10-6=-12.
15.如果a<0,ab<0,那么|a-b|+1-(a-b+3)的值是( C ) A.-2 B.2b+4
C.-2a+2b-2 D.2a-2b+2
16.已知三角形的第一条边长为3a+2b,第二条边比第一条边长a-b,第三条边比第二条边短2a,求这个三角形的周长.
解:第一条边长为3a+2b,则
第二条边长为(3a+2b)+(a-b)=4a+b, 第三条边长为(4a+b)-2a=2a+b,
所以三角形的周长为(3a+2b)+(4a+b)+(2a+b)=3a+2b+4a+b+2a+b=9a+4b.
22
17.已知x+y=-10,xy2=-81,求3[-(x+y)+2xy-z]-2[(x+y)-xy+z]-5[-3(x+y)-z]的值.
22
解:3[-(x+y)+2xy-z]-2[(x+y)-xy+z]-5[-3(x+y)-z]
22
=-3(x+y)+6xy-3z-2(x+y)+2xy-2z+15(x+y)+5z
2
=10(x+y)+8xy.
2
当x+y=-10,xy=-81时, 原式=10×(-10)+8×(-81) =-100-648 =-748.
2
2
5
5
5
32
23
5
七年级数学上册第三章整式及其加减第4节整式的加减第2课时去括号同步练习含解析新版北师大版



