……………………………………………………………精品资料推荐…………………………………………………
(2)在?0,上构造权函数(1??x)= g0(x)=1 g1(x)=x-131二次正交多项式g2(x)x
63 g2(x)=x2?x?73563 令?2(x)?(x?x0)(x?x1)?x2?x??073515?23015?230,x1?3535 代入:x0?11?A?A?dx01??0?x??Ax?Ax?1x1dx0011?0x???18?30A??0?18??A?18?301?18???10
118?3015?23018?3015?230f(x)dx?f()?f()18351835x13.分别用三点和四点Gauss-Chebyshev求积公式计算积分I?差。
解:(1)用三点(n?2)Gauss-Chebyshev求积公式来计算:
11?945(x)??(2?x)2,
64?1?12?xdx,并估计误21?x 此时,f(x)?2?x,f(6)Ak?1?(2k?1)??,xk?cos(k?0,1,n?132n?2,n),
x0?cos 由公式可得:
?6?33?5?3,x1?cos?0,x2?cos??, 2662I??3?k?022?xk??3(2?33?2?0?2?)?4.368939556197 22 16
……………………………………………………………精品资料推荐…………………………………………………
由余项可估计误差为 |E2[f]|?945?2.01335?10?3. 526!64?(2)用四点(n?3)Gauss-Chebyshev求积公式来计算:
此时,f(x)? Ak?2?x,f(8)15?945143(x)????(2?x)2,
6441?(2k?1)??,xk?cos(k?0,1,,n), n?142n?2?3?5?7? x0?cos,x1?cos,x2?cos,x2?cos,
8888I??4k?0?32?xk??4(2?cos?8?2?cos3?5?7??2?cos?2?cos) 888 ?4.368879180569. 由余项可估计误差为 |E3[f]|?945143?4??3.21327?10. 728!644??14.用三点Gauss?Legendre求积公式计算积分I?解:作变换x???0excosxdx,并估计误差。
?2(1?t),则得
I???0ecosxdx?x?2??11?e2(1?t)cos[(1?t)]dt??e22???2?1?2?1ecost?2tdt
由三点Gauss-Legendre公式:
??ba5158515f(x)dx?f(?)?f(0)?f()
9599515)5?(?5 I??e2[e229?85?1015?15cos(?)??ecos(?)]
109910?15 ???8e2(0.05705252905??0.650303782451) 29? ??12.06167600229.
其估计误差为:
74627(3!)4(6)??2(3!)???2?42?7?10E2(f)?f(?),???1,1?e??(?)ecos(),??337(6!)27(6!)82???11x?(??)。其准确值 I??ecosxdx??(1?e)??12.07034631639.
022其准确误差等于:|?12.06167600229?(?12.07034631639)|?8.6703141?10.
?3 17