lim(x?1(3?x)?(x?1)3?x1?2lim=?)?lim??1
x?1x?1x2?1x?1x?1(x?1)(x?1)1125(?2)(3??2)(?2)5?33(1?2x)5(3x2?x?2)xxx??lim)(6)lim= = )x??x??136226(x?1)(2x?3)6(1?)(2?)xx2.设函数
1?xsin?bx?0?x?f(x)??ax?0
?sinxx?0?x?问(1)a,b为何值时,f(x)在x?0处有极限存在(2)a,b为何值时,f(x)在x?0处连续 解:(1)要f(x)在x?0处有极限存在,即要lim?f(x)?lim?f(x)成立。
x?0x?0因为lim?f(x)?lim?(xsinx?0x?01sinx?b)?b lim?f(x)?lim??1
x?0x?0xxx?0所以,当b?1时,有lim?f(x)?lim?f(x)成立,即b?1时,函数在x?0处有极限存
x?0在,又因为函数在某点处有极限与在该点处是否有定义无关,所以此时a可以取任意值。 (2)依函数连续的定义知,函数在某点处连续的充要条件是lim?f(x)?lim?f(x)?f(x0)
x?x0x?x0于是有b?1?f(0)?a,即a?b?1时函数在x?0处连续。
x3?ax2?b?8,试确定a和b的值。 3.已知limx?2x?2x3?ax2?b?8 ?limx3?ax2?b?8?4a?b?0,即b??8?4a 解:?limx?2x?2x?2??x3?ax2?bx3?ax2?4a?8?lim?lim?limx2??a?2?x?2a?4?4a?12?8 x?2x?2x?2x?2x?2???a??1, 故b??4
e?1e?11x1x4.求limx?0arctan1 x解:?lim?e???, lim?e?0 lim?x?0x?0x?01x1x1x1xe?1e?11x1xarctan11?e1??lim?limarctan?, 1x?0?x?0?xx21?ex1x?1xx?0lim?e?1e?11xarctan1e?11?e?11??lim?1lim?arctan?, ?lim1arctan?
x?0x?0x2xx?0xx2ex?1e?1?x1??1x?05.设f(x)??e, ,求f(x)的间断点,并说明间断点的所属类型。 ??ln(1?x),?1?x?0解:f(x)在??1,0?,?0,1?,?1,???内连续, lim?ex?11x?1??,lim?ex?11x?1?0, f?0??0,因此x?1是f(x)
的第二类无穷间断点,lim?f?x??lim?ex?0x?01x?1?e?1, lim?f?x??lim?ln?1?x??0
x?0x?0因此x?0是f(x)的第一类跳跃间断点。
x?x2enx6.讨论f(x)?lim的连续性。
n??1?enxx?x2enx解:f(x)?limn??1?enx?x2,x?0???0,x?0 因此f(x)在???,0?,?0,???内连续 ?x,x?0?又 limf?x??f?0??0 ?f?x?在???,???上连续
x?0
第三章 微分学基本理论作业(练习三)
一、填空题:
1.设f(x)?(1?cosx)
2.limx?1sin(x2?3x),则f?(0)?__-6___
x?x0x0f(x)?xf(x0)=x0f??x0??f?x0?
x?x03.已知
d11 [f(x3)]?,则f?(x)?dxx3x?n?1?4.设y?x?x?1??x?2?????x?n?,则y2?(n?1)!
225.f(x)?x,则f(f?(x)?1)?__________ (2x?1)或4x?4x?1
4x?y2(x,y)|0?x2?y26.函数z?22的定义域为?ln(1?x?y)227.已知f(x?y,x?y)?xy?xy,则f(x,y)?(x2?y2)
?1且y2?4x}
x48.设f(x,y)?xy?0?0x,则fx?(0,1)?______。fy?(0,1)?lim?0
?y?0?yx2?y2
9.由方程xyz?
10.设z?x?siny,x?cost,y?t,则
二、选择题:
1.下列命题正确的是( D )
A. f?(x0)?[f(x0)]? B. f???x0??lim?f??x?; (C)limx?x023x2?y2?z2?2确定的函数z=z(x,y),在点(1,0,-1)处的全微分dz?dx?2dy
dz??2xsint?3t2cosy dt?x?0f(x??x)?f(x)?f?(x)
?xD. f?(x0)?0表示曲线y?f(x)在点(x0,f(x0))处的切线与x轴平行
1??xsin,x?02.设f(x)??,则f(x)在x?0处( B ) x??x,x?0A.连续且可导 B.连续但不可导 C.不连续但可导 D.既不连续又不可导 3.曲线y?x?x在点(1,0)处的切线是( A )。
A. y?2x?2 B. y??2x?2 C. y?2x?2 D. y??2x?2 4.已知y?3314x,则y??=( B ) 42A. x B. 3x C. 6x D. 6 5.若f()?x,则f?(x)?( D )。
1xA.
1111 B.2 C.? D.?2 xxxx6.的定义域为( D )。
A. B. C. D. 7.下列极限存在的是( D )
A.limx B. 1 C. x2 D. limxsin1 limlimx?0x?yx?0x?0x?yx?0x?yx?yy?0y?0y?0y?0?f?f8.f(x,y)在(x0,y0)处?x,?y均存在是
f(x,y)在(x0,y0)处连续的( D )条件。
A.充分 B.必要 C.充分必要 D.既不充分也不必要 9.设u?xyf(x?y?u?u),f(t)可微,且满足x2?y2?uG(x,y)则G(x,y)=( B )。 xy?x?y222A. x?y B. x?y C. x?y D. (x?y)
10.肯定不是某个二元函数的全微分的为( B )
A. ydx?xdy B. ydx?xdy C. xdx?ydx D. xdx?ydx
三、求解下列各题: 1.求下列函数的导数:
(1)f(x)?lgx 解:f?(x)?(2)y?ln(x?1?x2)
解:y??11?lge
xln10x1(x?1?x2)1(x?1?x2)??2x21?x21(x?1?x2)1(1?121?x2(1?x2)?)
11?x2?yz(x?1?x)2(1?)?x?1?x22(x?1?x)1?x2?
(3)u?x 解:
zzz1?u?u?xylnx?zyz?1?zxyyz?1lnx ?yzxy?1 ?y?xzz?u?xylnx?yz?xyyzlny ?z(4)F(x,y)??xyyf(s)ds??edx 解:
01x2?F?F?xf(xy)?f(y) ?f(xy)y ?y?x2.求曲线y?lnx在(1,0)点处的切线方程。 解:f?(x)?11,k?f?(1)?xx?1,于是,曲线y?lnx在(1,0)点处的切线方程为:
x?1y?0?k?(x?1),即y?x?1。
3.下列各方程中y是x的隐函数的导数 (1)xy?e?e?1,求y?
xy解:方程两边对自变量x求导,视y为中间变量,即(xy)??(e)??(e)??1?
xyex?yy?xy??e?ey??0 (x?e)y??e?y 整理得 y??
x?eyxyyxdyd2y(2)设y?sin(x?y),求, 2dxdx解:y??cos(x?y)?(1?y?) y??cos(x?y)
1?cos(x?y)y????sin(x?y)?(1?y?)2?cos(x?y)?y??
y????sin(x?y)?y?
[1?cos(x?y)]3[1?cos(x?y)]3z?y(3)设z?z(x,y)由方程z?x?e解:设F(x,y,z)?ez?y?2z所确定,求
?y?x?z?x 故Fx??1 Fy??ez?y Fz?ez?y?1
?zez?y1?z1?z?y?, , ?z?y?xe?1?ye?11?ey?z?2z?1?ey?z?ze2(y?z). ??()???y?zy?z2y?z3?y?x?x1?e(1?e)?x(1?e)4.求下列极限:
1?xy1?0(1)lim1?xy 解:lim2??1
x?0x?y2x?0x2?y21?0y?1y?1(2)lim1?cosx2?y2x?y22
x?0y?0x2?y22x2?y222(sin)2(sin)1?cosx2?y2122解:lim lim?lim?222222x?0x?0x?02x?yx?yx?y2y?0y?0y?04()2(3)limx 解:limx不存在。
x?0x?yx?0x?yy?0y?0