好文档 - 专业文书写作范文服务资料分享网站

人教版高中数学全套教案导学案2.2

天下 分享 时间: 加入收藏 我要投稿 点赞

2.2 等差数列

(一)教学目标

1.知识与技能:通过实例,理解等差数列的概念;探索并掌握等差数列的通项公式;能在具体的问题情境中,发现数列的等差关系并能用有关知识解决相应的问题;体会等差数列与一次函数的关系。

2. 过程与方法:让学生对日常生活中实际问题分析,引导学生通过观察,推导,归纳抽象出等差数列的概念;由学生建立等差数列模型用相关知识解决一些简单的问题,进行等差数列通项公式应用的实践操作并在操作过程中,通过类比函数概念、性质、表达式得到对等差数列相应问题的研究。

3.情态与价值:培养学生观察、归纳的能力,培养学生的应用意识。 (二)教学重、难点

重点:理解等差数列的概念及其性质,探索并掌握等差数列的通项公式;会用公式解决一些简单的问题,体会等差数列与一次函数之间的联系。 难点:概括通项公式推导过程中体现出的数学思想方法。

(三)学法与教学用具

学法:引导学生首先从四个现实问题(数数问题、女子举重奖项设置问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列的特点,推导出等差数列的通项公式;可以用多种方法对等差数列的通项公式进行推导。 教学用具:投影仪

(四)教学设想 [创设情景]

上节课我们学习了数列。在日常生活中,人口增长、教育贷款、存款利息等等这些大家以后会接触得比较多的实际计算问题,都需要用到有关数列的知识来解决。今天我们就先学习一类特殊的数列。 [探索研究]

由学生观察分析并得出答案:

(放投影片)在现实生活中,我们经常这样数数,从0开始,每隔5数一次,可以得到数列:0,5,____,____,____,____,……

2012年,在伦敦举行的奥运会上,女子举重项目共设置了7个级别。其中较轻的4个级别体重组成数列(单位:kg):48,53,58,63。

水库的管理人员为了保证优质鱼类有良好的生活环境,用定期放水清理水库的杂鱼。如果一个水库的水位为18cm,自然放水每天水位降低2.5m,最低降至5m。那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位组成数列(单位:m):18,15.5,13,10.5,8,5.5

我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本金计算下一期的利息。按照单利计算本利和的公式是:本利和=本金×(1+利率×寸期).例如,按活期存入10 000元钱,年利率是0.72%。那么按照单利,5年内各年末的本利和分别是: 时间 第1年 第2年 第3年 第4年 年初本金(元) 10 000 10 000 10 000 10 000 年末本利和(元) 10 072 10 144 10 216 10 288 第5年 10 000 10 360 各年末的本利和(单位:元)组成了数列:10 072,10 144,10 216, 10 288,10 360。 思考:同学们观察一下上面的这四个数列:0,5,10,15,20,…… ①

48,53,58,63 ②

18,15.5,13,10.5,8,5.5 ③

10 072,10 144,10 216, 10 288,10 360 ④

看这些数列有什么共同特点呢? (由学生讨论、分析)

引导学生观察相邻两项间的关系,得到:

对于数列①,从第2项起,每一项与前一项的差都等于 5 ; 对于数列②,从第2项起,每一项与前一项的差都等于 5 ; 对于数列③,从第2项起,每一项与前一项的差都等于 -2.5 ; 对于数列④,从第2项起,每一项与前一项的差都等于 72 ;

由学生归纳和概括出,以上四个数列从第2项起,每一项与前一项的差都等于同一个常数(即:每个都具有相邻两项差为同一个常数的特点)。

[等差数列的概念]

对于以上几组数列我们称它们为等差数列。请同学们根据我们刚才分析等差数列的特征,尝试着给等差数列下个定义:

等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。

这个常数叫做等差数列的公差,公差通常用字母d表示。那么对于以上四组等差数列,它们的公差依次是5,5,-2.5,72。 提问:如果在a与b中间插入一个数A,使a,A,b成等差数列数列,那么A应满足什么条件?

由学生回答:因为a,A,b组成了一个等差数列,那么由定义可以知道:

A-a=b-A 所以就有 A?a?b 2由三个数a,A,b组成的等差数列可以看成最简单的等差数列,这时,A叫做a与b的等差中项。

不难发现,在一个等差数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等差中项。

如数列:1,3,5,7,9,11,13…中

5是3和7的等差中项,1和9的等差中项。 9是7和11的等差中项,5和13的等差中项。 看来,a2?a4?a1?a5,a4?a6?a3?a7 从而可得在一等差数列中,若m+n=p+q 则 am?an?ap?aq

[等差数列的通项公式]

对于以上的等差数列,我们能不能用通项公式将它们表示出来呢?这是我们接下来要学习的内容。

⑴、我们是通过研究数列{an}的第n项与序n之间的关系去写出数列的通项公式的。下面由同学们根据通项公式的定义,写出这四组等差数列的通项公式。 由学生经过分析写出通项公式:

① 这个数列的第一项是5,第2项是10(=5+5),第3项是15(=5+5+5),第4项是20

(=5+5+5+5),……由此可以猜想得到这个数列的通项公式是an?5n

② 这个数列的第一项是48,第2项是53(=48+5),第3项是58(=48+5×2),第4项是63(=48+5×3),由此可以猜想得到这个数列的通项公式是an?48?5(n?1)

③ 这个数列的第一项是18,第2项是15.5(=18-2.5),第3项是13(=18-2.5×2),第4项是10.5(=18-2.5×3),第5项是8(=18-2.5×4),第6项是5.5(=18-2.5×5)由此可以猜想得到这个数列的通项公式是an?18?2.5(n?1)

④ 这个数列的第一项是10072,第2项是10144(=10172+72),第3项是10216(=10072+72×2),第4项是10288(=10072+72×3),第5项是10360(=10072+72×4),由此可以猜想得到这个数列的通项公式是an?10072?72(n?1)

⑵、那么,如果任意给了一个等差数列的首项a1和公差d,它的通项公式是什么呢? 引导学生根据等差数列的定义进行归纳: a2?a1?d,

(n-1)个等式 a3?a2?d,

a4?a3?d,

所以 a2?a1?d, a3?a2?d, a4?a3?d,

……

思考:那么通项公式到底如何表达呢?

a2?a1?d,

a3?a2?d?(a1?d)?d?a?2d, a4?a3?d?(a1?2d)?d?a?3d,

……

得出通项公式:由此我们可以猜想得出:以a1为首项,d为公差的等差数列{an}的通项公式为:an?a1?(n?1)d

也就是说,只要我们知道了等差数列的首项a1和公差d,那么这个等差数列的通项an就可以表示出来了。

选讲:除此之外,还可以用迭加法和迭代法推导等差数列的通项公式: (迭加法): {an}是等差数列,所以 an?an?1?d, an?1?an?2?d, an?2?an?3?d, …… a2?a1?d, 两边分别相加得 an?a1?(n?1)d, 所以 an?a1?(n?1)d (迭代法):{an}是等差数列,则有 an?an?1?d

?an?2?d?d ?an?2?2d ?an?3?d?2d ?an?3?3d ……

?a1?(n?1)d 所以 an?a1?(n?1)d

[例题分析]

例1、⑴求等差数列8,5,2,…的第20项.

⑵-401是不是等差数列-5,-9,-13,…的项?如果是,是第几项?

分析:⑴要求出第20项,可以利用通项公式求出来。首项知道了,还需要知道的是该等差数列的公差,由公差的定义可以求出公差;

⑵这个问题可以看成是上面那个问题的一个逆问题。要判断这个数是不是数列中

的项,就是要看它是否满足该数列的通项公式,并且需要注意的是,项数是否有意义。 解:⑴由a1=8,d=5-8=-3,n=20,得a20?8?(21?1)?(?3)??49

⑵由a1=-5,d=-9-(-5)=-4,得这个数列的通项公式为an??5?4(n?1)??4n?1,由题意知,本题是要回答是否存在正整数n,使得-401=-4n-1成立。

解这个关于n的方程,得n=100,即-401是这个数列的第100项。

例题评述:从该例题中可以看出,等差数列的通项公式其实就是一个关于an、a1、d、n(独立的量有3个)的方程;另外,要懂得利用通项公式来判断所给的数是不是数列中的项,当判断是第几项的项数时还应看求出的项数是否为正整数,如果不是正整数,那么它就不是数列中的项。

(放投影片)例2.某市出租车的计价标准为1.2元/km,起步价为10元,即最初的4km(不含4千米)计费10元。如果某人乘坐该市的出租车去往14km处的目的地,且一路畅通,等候时间为0,需要支付多少车费?

解:根据题意,当该市出租车的行程大于或等于4km时,每增加1km,乘客需要支付1.2元.所以,我们可以建立一个等差数列{an}来计算车费.

令a1=11.2,表示4km处的车费,公差d=1.2。那么当出租车行至14km处时,n=11,此时需要支付车费a11?11.2?(11?1)?1.2?23.2(元)

答:需要支付车费23.2元。 例题评述:这是等差数列用于解决实际问题的一个简单应用,要学会从实际问题中抽象出等差数列模型,用等差数列的知识解决实际问题。

(放投影片)思考例题:例3 已知数列{an}的通项公式为an?pn?q,其中p、q为常数,且p≠0,那么这个数列一定是等差数列吗?

分析:判定{an}是不是等差数列,可以利用等差数列的定义,也就是看an?an?1(n>1)是不是一个与n无关的常数。

解:取数列{an}中的任意相邻两项an与an?1(n>1),

求差得 an?an?1?(pn?q)?[p{n?1)?q]?pn?q?(pn?p?q]?p 它是一个与n无关的数.

所以{an}是等差数列。

课本左边“旁注”:这个等差数列的首项与公差分别是多少?

这个数列的首项a1?p?q,公差d?p。由此我们可以知道对于通项公式是形如

an?pn?q的数列,一定是等差数列,一次项系数p就是这个等差数列的公差,首项是p+q.

例题评述:通过这个例题我们知道判断一个数列是否是等差数列的方法:如果一个数列的通

人教版高中数学全套教案导学案2.2

2.2等差数列(一)教学目标1.知识与技能:通过实例,理解等差数列的概念;探索并掌握等差数列的通项公式;能在具体的问题情境中,发现数列的等差关系并能用有关知识解决相应的问题;体会等差数列与一次函数的关系。2.过程与方法:让学生对日常生活中实际问题分析,引导学生通过观察,推导,归纳抽象出等差数列的概念;由学生建立等差数列模型用相关知识解决一些
推荐度:
点击下载文档文档为doc格式
1yrnq3qery570pk9t8239nplx1m5bx00ajy
领取福利

微信扫码领取福利

微信扫码分享