∴△NEC∽△DHC
NCECt5?t即? ?DCHC 5325∴t??????8分
8∴
③当MN?MC时,如图⑤,过M作MF?CN于F点.FC?解法一:(方法同②中解法一)
11NC?t 22A
D
N F
1t60FC3解得t? cosC??2?17MC10?2t5
解法二:
∵∠C?∠C,?MFC??DHC?90? ∴△MFC∽△DHC
B
H M
C
1t(图⑤) FCMC6010?2t2∴即∴t? ??HCDC 1735
256010综上所述,当t?、t?或t?时,△MNC为等腰三角形 ··················· 9分
81738(09江西)如图1,在等腰梯形ABCD中,AD∥BC,E是AB的中点,过点E作EF∥BC交CD于点F.AB?4,BC?6,∠B?60?. (1)求点E到BC的距离; (2)点P为线段EF上的一个动点,过P作PM?EF交BC于点M,过M作MN∥AB交折线ADC于点N,连结PN,设EP?x.
①当点N在线段AD上时(如图2),△PMN的形状是否发生改变?若不变,求出△PMN的周长;若
改变,请说明理由;
A E B
图1 A E B
图4(备用)
D F C
B
图5(备用)
D F C
B
M
图2
D F C
A E P N D F C B
A E P D N
F
C
M 图3
(第25题) A
E
②当点N在线段DC上时(如图3),是否存在点P,使△PMN为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由. 解(1)如图1,过点E作EG?BC于点G. ··························· 1分
∵E为AB的中点,
41
1 AB?2.2在Rt△EBG中,∠B?60?,∴∠BEG?30?.?????2分
1∴BG?BE?1 ,EG?22?12?3.2∴BE?即点E到BC的距离为3.?????3分
(2)①当点N在线段AD上运动时,△PMN的形状不发生改变. ∵PM?EF,EG?EF,∴PM∥EG. ∵EF∥BC,∴EP?GM,PM?EG?3. 同理MN?AB?4.?????4分
如图2,过点P作PH?MN于H,∵MN∥AB, ∴∠NMC?∠B?60?,∠PMH?30?. ∴PH?E B
A D F C
图1
G A
N D F
H
13PM?. 22∴MH?PM? cos30??.32E B
22P 35则NH?MN?MH?4??.
22G M
图2
C
?5??3?在Rt△PNH中,PN?NH2?PH2????? ?7.????2??2?∴△PMN的周长=PM?PN?MN?3?7?4. ················································· 6分 ②当点N在线段DC上运动时,△PMN的形状发生改变,但△MNC恒为等边三角形. 当PM?PN时,如图3,作PR?MN于R,则MR?NR.
3 .2∴MN?2MR?3 ········································································································· 7分 .∵△MNC是等边三角形,∴MC?MN?3.
此时,x?EP?GM?BC?BG?MC?6?1?3?2. ············································· 8分
类似①,MR?A E B
P R
G
M
图3
C
B
G
图4
M
D N F
A E P D F N C
B
A E D F(P) N C
当
G
图5
M
MP?MN时,如图4,这时MC?MN?MP?3.此时,x?EP?GM?6?1?3?5?3.
42
当NP?NM时,如图5,∠NPM?∠PMN?30?. 则∠PMN?120?,又∠MNC?60?, ∴∠PNM?∠MNC?180?.
因此点P与F重合,△PMC为直角三角形. ∴MC?PM? tan30??1.此时,x?EP?GM?6?1?1?4.
综上所述,当x?2或4或5?3时,△PMN为等腰三角形. ························· 10分
9(09兰州)如图①,正方形 ABCD中,点A、B的坐标分别为(0,10),(8,4),
点C在第一象限.动点P在正方形 ABCD的边上,从点A出发沿A→B→C→D匀速运动, 同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动, 设运动的时间为t秒.
(1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度; (2)求正方形边长及顶点C的坐标;
(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标; (4)如果点P、Q保持原速度不变,当点P沿A→B→C→D匀速运动时,OP与PQ能否相等,若能,写出所有符合条件的t的值;若不能,请说明理由. 解:(1)Q(1,0)?????1分
点P运动速度每秒钟1个单位长度.?????2分 (2) 过点B作BF⊥y轴于点F,BE⊥x轴于点E,则BF=8,OF?BE?4. ∴AF?10?4?6.
在Rt△AFB中,AB?82?62?10?????3分 过点C作CG⊥x轴于点G,与FB的延长线交于点H. ∵?ABC?90?,AB?BC ∴△ABF≌△BCH. ∴BH?AF?6,CH?BF?8. ∴OG?FH?8?6?14,CG?8?4?12.
∴所求C点的坐标为(14,12). ?????4分 (3) 过点P作PM⊥y轴于点M,PN⊥x轴于点N, 则△APM∽△ABF.
APAMMPtAMMP ∴. ?. ????1068ABAFBFyD??CAMPHGx ∴AM?t,PM?t. ∴PN?OM?10?t,ON?PM?t.
ONQE35453545FB设△OPQ的面积为S(平方单位) ∴S??(10?t)(1?t)?5?1235473t?t2(0≤t≤10) ?????5分 10104710说明:未注明自变量的取值范围不扣分.
473?<0 ∴当t??时, △OPQ的面积最大. ································ 6分 36102?(?)10 ∵a?? 43
此时P的坐标为(
539453,) . ························································································ 7分 1510295时, OP与PQ相等. ······························································ 9分 13(4) 当 t?或t?10(09临沂)数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.?AEF?90,且EF交正方形外角?DCG的平行线CF于点F,求证:AE=EF.
经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以AE?EF.
在此基础上,同学们作了进一步的研究:
(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由; (2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.
D A
解:(1)正确. (1分)
F 证明:在AB上取一点M,使AM?EC,连接ME. (2分)
?BM?BE.??BME?45°,??AME?135°.
B E C G ?CF是外角平分线,
图1 ??DCF?45°,
???ECF?135°.
??AME??ECF.
??AEB??BAE?90°,?AEB??CEF?90°, ??BAE??CEF. ?△AME≌△BCF(ASA).?????(5分) ?AE?EF.?????(6分)
A M B E
D
F C
G
A
D
F
B (2)正确.?????(7分) 证明:在BA的延长线上取一点N.
使AN?CE,连接NE.?????(8分) N F D A D ?BN?BE. A
??N??PCE?45°. ?四边形ABCD是正方形, ?AD∥BE. B B C E G C E G ??DAE??BEA. 图3 ??NAE??CEF. ?△ANE≌△ECF(ASA).?????(10分) ?AE?EF.?????(11分)
11(09天津)已知一个直角三角形纸片OAB,其中?AOB?90°,OA?2,OB?4.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB交于点C,与边AB交于点
y D.
B (Ⅰ)若折叠后使点B与点A重合,求点C的坐标;
(Ⅱ)若折叠后点B落在边OA上的点为B?,设OB??x,OC?y,试写出y关于x的函数解析式,并确定y的取值范围;
O (Ⅲ)若折叠后点B落在边OA上的点为B?,且使B?D∥OB,求此时点C的坐标.
44
E C
图2
G
F A x
解(Ⅰ)如图①,折叠后点B与点A重合, 则△ACD≌△BCD.
设点C的坐标为?0,m??m?0?. 则BC?OB?OC?4?m. 于是AC?BC?4?m.
在Rt△AOC中,由勾股定理,得AC?OC?OA, 即?4?m??m?2,解得m?222y B 222O A x 3. 2B y ?3??点C的坐标为?0,?.?????4分
?2?(Ⅱ)如图②,折叠后点B落在OA边上的点为B?, 则△B?CD≌△BCD. 由题设OB??x,OC?y, 则B?C?BC?OB?OC?4?y,
在Rt△B?OC中,由勾股定理,得B?C?OC?OB?.
222O A x ??4?y??y2?x2,
212··················································································································· 6分 x?2 ·
8由点B?在边OA上,有0≤x≤2,
1? 解析式y??x2?2?0≤x≤2?为所求.
8即y??? ?当0≤x≤2时,y随x的增大而减小,
3······················································································ 7分 ?y的取值范围为≤y≤2. ·
2(Ⅲ)如图③,折叠后点B落在OA边上的点为B??,且B??D∥OB. 则?OCB????CB??D. 又??CBD??CB??D,??OCB????CBD,有CB??∥BA. ?Rt△COB??∽Rt△BOA. OB??OC有,得OC?2OB??. ···················································································· 9分 ?OAOB在Rt△B??OC中,
设OB???x0?x?0?,则OC?2x0. 由(Ⅱ)的结论,得2x0??12x0?2, 8?x0?0,?x0??8?45. 解得x0??8?45. 45