2020 中考 理科
2.如图,已知AD是△ABC的外角∠EAC的平分线,交BC的延长线于点D,延长DA交△ABC的外接圆于点F,连接FB,FC.
(1)求证:∠FBC=∠FCB;
(2)已知FA·FD=12,若AB是△ABC外接圆的直径,FA=2,求CD的长.
3.(2019绵阳)如图,AB是☉O的直径,点C为BD交CF于点G,连接CD,AD,BF. (1)求证:△BFG≌△CDG; (2)若AD=BE=2,求BF的长.
的中点,CF为☉O的弦,且CF⊥AB,垂足为点E,连接
2020 中考 理科
二、与切线有关的计算与证明
1.如图,△ABC中,AB=AC,以AB为直径的☉O交BC于点D,交AC于点E,过点D作DF⊥AC于点F,交AB的延长线于点G.
(1)求证:GF是☉O的切线; (2)已知BD=2
,CF=2,求AE和BG的长.
2.(2019枣庄)如图,在Rt△ABC中,∠ABC=90°,以AB为直径作☉O,点D为☉O上一点,且CD=CB,连接DO并延长交CB的延长线于点E.
(1)判断直线CD与☉O的位置关系,并说明理由;
(2)若BE=2,DE=4,求圆的半径及AC的长.
2020 中考 理科
3.如图,点E是△ABC的内心,AE的延长线交BC于点F,交△ABC的外接圆☉O于点D.连接BD,过点D作直线DM,使∠BDM=∠DAC. (1)求证:直线DM是☉O的切线;
(2)求证:DE2=DF·DA.
三、与弧长、扇形面积有关的计算与证明
1.如图,AB是☉O的直径,直线CD与☉O相切于点C,且与AB的延长线交于点E,点C是(1)求证:AD⊥CD;
的中点.
2020 中考 理科
(2)若∠CAD=30°,☉O的半径为3,一只蚂蚁从点B出发,沿着BE-EC-(π≈3.14,
≈1.73,结果保留一位小数).
爬回至点B,求蚂蚁爬过的路程
2.(2019济南模拟)如图,AB为☉O的直径,OE⊥BC,垂足为点E,AB⊥CD,垂足为点F. (1)求证:AD=2OE;
(2)若∠ABC=30°,☉O的半径为2,求两阴影部分面积的和.
2020 中考 理科
3.如图,AB是☉O的直径,AM和BN是☉O的两条切线,E为☉O上一点,过点E作直线DC分别交AM,BN于点D,C,且CB=CE.
(1)求证:DA=DE; (2)若AB=6,CD=4
,求图中阴影部分的面积.
小专题集训(七) 图形相似小综合
(参考用时:45分钟)
一、与相似三角形的性质和判定有关的计算与证明
1.如图,在△ABC中,AB=8,BC=4,CA=6,CD∥AB,BD是∠ABC的平分线,BD交AC于点E,求AE的长.