好文档 - 专业文书写作范文服务资料分享网站

等差数列前n项和公式教学导案

天下 分享 时间: 加入收藏 我要投稿 点赞

等差数列前n项和公式教案

———————————————————————————————— 作者: ———————————————————————————————— 日期:

《等差数列前n项和公式》教学案例

一、 教材分析

“等差数列前n项和公式”这节课是人教版高中数学(必修)第一册(上)中的第三章第三节第一课时的内容,是上一节“等差数列”的后继内容。主要内容:等差数列前n项和公式的推导及运用。

(一)地位及作用

数列是高中代数的主要内容,它与数学课程的其它内容(函数、三角、不等式等)有着密切的联系,又是今后学习高等数学的基础,所以在高考中占有重要地位。

数列是培养学生数学能力的良好题材。学习数列,要经常观察、分析、归纳、猜想,还要综合运用前面的知识解决数列中的一些问题,这些都有助于学生数学能力的提高。 (二)教学目标

根据“等差数列前n项和公式”这一节的教学大纲及它在高中数学中的地位和作用,确定了如下教学目标: 1、知识与技能:

① 掌握等差数列前n项和公式的推导方法和公式的简单运用。

② 通过对公式从不同角度、不同侧面的剖析,培养学生思维的灵活性,提高学生分析问题和解决问题的能力。 2、过程与方法:

经历公式的推导过程,体会数形结合的数学思想,体验从特殊到一般的研究方法,学会观察、归纳、反思,进一步培养学生灵活运用公式的能力。 3、情感、态度价值观:

① 公式的发现反映了普遍性寓于特殊性之中,从而使学生受到辩证唯物主义思想的熏陶。 ② 通过生动具体的现实问题,令人着迷的历史素材和数学史,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感。 (三)教学重点与难点:

重点:等差数列前n项和的公式;依据:公式是解题的工具。

难点:获得推导等差数列前n项和公式的思路及公式的灵活运用。

依据:公式探究过程中蕴含着重要的数学思想方法,由于学生认识水平的限制,第一次接触到这些公式,往往意识不到其作用,即使教师给予揭示,学生也多半拿着公式而无用武之地,因此我把它作为这一节的难点。 二、学生情况

本届学生是实行课程改革后升入高一年,课堂比较活跃,乐于表现自已,表达能力强。本节是学生已经掌握了等差数列的通项公式、有关性质等知识后进一步学习的,但初中是新课程下的实验教材,现高一年是旧教材,存在知识脱节,学生的运算能力和逻辑思维能力比较低。 三、教法

根据以上对教材和学生的分析,并针对学校实际情况,采用启发引导式及多媒体辅助教学方法。

由于教师不仅是知识的传授者,而且也是学生学习的引导者、组织者和合作者。所以我采用“问题情景---建立模型---求解---解释---应用”的教学模式,启发引导学生通过对问题的亲身动手探求、体验,获得不仅是知识,更重要的是掌握了在今后的发展中用这种手段去获取更多的知识的方法。这是“教师教给学生寻找水的方法或给学生一杯水,使学生能找到一桶水乃至更多活水”的求知方式。多媒体可以使教学内容生动、形象、鲜明地得到展示。

四、学法

引导学生自主探索,创造机会让学生合作、探究,交流。

理论依据:建构主义学习理论认为,学习是学生积极主动的建构知识的过程,学习应该与学生熟悉的背景相联系。在教学中,让学生在问题情境中,经历知识的形成和发展,让学生在观察、操作、归纳、思考、探索、交流、反思参与的活动中学习,认识和理解数学知识,学会学习,发展能力。 五、教学活动过程 教学 内容 环节1 活动 活动 意图 学生 教师 设计 创设问题情景,引入新课泰姬陵坐落于印度古都阿格,是十七世纪莫卧儿帝国皇帝沙杰罕为纪念其爱妃所建,她宏伟壮观,纯白大理石砌建而成的主体建筑叫人心醉神迷,成为世界七大奇迹之一。陵寝以宝石镶饰,图案之细致令人叫绝。 传说陵寝中有一个三角形图案,以相同大小的圆宝石镶饰而成,共有100层(见课件),奢靡之程度,可见一斑。你知道这个图案一共花了多少宝石吗? 感受情景,体验数学知识. 引导学生观赏课件 环节1:落实了情感、态度价值观目标。 该素材源于历史,富人文气息。图中算数,激发学生探究的兴趣和欲望,起到承上启下的作用,探讨高斯算法。 教学 环节2 内容 活动 问题化归:即求 =?(高斯10岁时的算法). 叙述高斯解 法. 活动 展示幻灯,提问. 意图 关注学生已有经验是影响数学学习的重要因素之一,数学史的引入更能激发学生主动探索的 热情. 教师到小小的变化,深藏各小组着教师的大企划:指导,针借此引入种种求和对学生方法,以此为铺垫. 五花八 门的解法,给予 鼓励与肯定. 进而教师提出质疑:有无更简单的方法? 启发1: ,即先求 ,是否更方便? 启发2:情景提示,借助几何图形之直观性,引导学生使用熟悉的几何方法:把“全等三角形”倒置,与原图补成平行四边形。 层层递进的二个启发,视学生具体情况而定,实际情景学生 教师 设计 问题1:图案中,第1层到第21层一共有多少颗宝石? 即求 =?在教师的引导下,学生发现了: 方法1:原式= . 探 究 发 现 方法2:原式= . 方法3:原式= 方法4:原式 学生发现:高斯“首尾配对” 的算法还得分“奇、偶”个项的情况求和。 独立思考,小组讨论交流.

1y09641uqg862m61dk4v721et5ixw1005pm
领取福利

微信扫码领取福利

微信扫码分享