好文档 - 专业文书写作范文服务资料分享网站

(完整版)数据结构(C语言版)第三四章习题答案

天下 分享 时间: 加入收藏 我要投稿 点赞

第3章 栈和队列

习题

1.选择题

(1)若让元素1,2,3,4,5依次进栈,则出栈次序不可能出现在( )种情况。 A.5,4,3,2,1 B.2,1,5,4,3 C.4,3,1,2,5 D.2,3,5,4,1

(2)若已知一个栈的入栈序列是1,2,3,…,n,其输出序列为p1,p2,p3,…,pn,若p1=n,则pi为( )。

A.i B.n-i C.n-i+1 D.不确定 (3)数组Q[n]用来表示一个循环队列,f为当前队列头元素的前一位置,r为队尾元素的位置,假定队列中元素的个数小于n,计算队列中元素个数的公式为( )。

A.r-f B.(n+f-r)%n C.n+r-f D.(n+r-f)%n (4)链式栈结点为:(data,link),top指向栈顶.若想摘除栈顶结点,并将删除结点的值保存到x中,则应执行操作( )。

A.x=top->data;top=top->link; B.top=top->link;x=top->link; C.x=top;top=top->link; D.x=top->link; (5)设有一个递归算法如下

int fact(int n) { //n大于等于0 if(n<=0) return 1;

else return n*fact(n-1); }

则计算fact(n)需要调用该函数的次数为( )。

A. n+1 B. n-1 C. n D. n+2 (6)栈在 ( )中有所应用。

A.递归调用 B.函数调用 C.表达式求值 D.前三个选项都有 (7)为解决计算机主机与打印机间速度不匹配问题,通常设一个打印数据缓冲区。主机将要输出的数据依次写入该缓冲区,而打印机则依次从该缓冲区中取出数据。该缓冲区的逻辑结构应该是( )。

A.队列 B.栈 C. 线性表 D.有序表

(8)设栈S和队列Q的初始状态为空,元素e1、e2、e3、e4、e5和e6依次进入栈S,一个元素出栈后即进入Q,若6个元素出队的序列是e2、e4、e3、e6、e5和e1,则栈S的容量至少应该是( )。

A.2 B.3 C.4 D. 6

(9)在一个具有n个单元的顺序栈中,假设以地址高端作为栈底,以top作为栈顶指针,则当作进栈处理时,top的变化为( )。

A.top不变 B.top=0 C.top-- D.top++

(10)设计一个判别表达式中左,右括号是否配对出现的算法,采用( )数据结构最佳。

A.线性表的顺序存储结构 B.队列 C. 线性表的链式存储结构 D. 栈

(11)用链接方式存储的队列,在进行删除运算时( )。 A. 仅修改头指针 B. 仅修改尾指针

C. 头、尾指针都要修改 D. 头、尾指针可能都要修改 (12)循环队列存储在数组A[0..m]中,则入队时的操作为( )。 A. rear=rear+1 B. rear=(rear+1)%(m-1) C. rear=(rear+1)%m D. rear=(rear+1)%(m+1) (13)最大容量为n的循环队列,队尾指针是rear,队头是front,则队空的条件是( )。

A. (rear+1)%n==front B. rear==front C.rear+1==front D. (rear-l)%n==front (14)栈和队列的共同点是( )。

A. 都是先进先出 B. 都是先进后出 C. 只允许在端点处插入和删除元素 D. 没有共同点 (15)一个递归算法必须包括( )。

A. 递归部分 B. 终止条件和递归部分 C. 迭代部分 D. 终止条件和迭代部分

(2)回文是指正读反读均相同的字符序列,如“abba”和“abdba”均是回文,但“good”不是回文。试写一个算法判定给定的字符向量是否为回文。(提示:将一半字符入栈)

根据提示,算法可设计为: //以下为顺序栈的存储结构定义

#define StackSize 100 //假定预分配的栈空间最多为100个元素 typedef char DataType;//假定栈元素的数据类型为字符 typedef struct{

DataType data[StackSize]; int top; }SeqStack;

int IsHuiwen( char *t)

{//判断t字符向量是否为回文,若是,返回1,否则返回0 SeqStack s; int i , len; char temp; InitStack( &s);

len=strlen(t); //求向量长度

for ( i=0; i

Push( &s, t[i]); while( !EmptyStack( &s))

{// 每弹出一个字符与相应字符比较 temp=Pop (&s);

if( temp!=S[i]) return 0 ;// 不等则返回0 else i++; }

return 1 ; // 比较完毕均相等则返回 1 }

(3)设从键盘输入一整数的序列:a1, a2, a3,…,an,试编写算法实现:用栈结构存储输入的整数,当ai≠-1时,将ai进栈;当ai=-1时,输出栈顶整数并出栈。算法应对异常情况(入栈满等)给出相应的信息。 #define maxsize 栈空间容量

void InOutS(int s[maxsize])

//s是元素为整数的栈,本算法进行入栈和退栈操作。

{int top=0; //top为栈顶指针,定义top=0时为栈空。 for(i=1; i<=n; i++) //n个整数序列作处理。 {scanf(“%d”,&x); //从键盘读入整数序列。

if(x!=-1) // 读入的整数不等于-1时入栈。

if(top==maxsize-1){printf(“栈满\\n”);exit(0);}else s[++top]=x; //x入栈。 else //读入的整数等于-1时退栈。

{if(top==0){printf(“栈空\\n”);exit(0);} else printf(“出栈元素

是%d\\n”,s[top--]);}} }//算法结束。

(4)从键盘上输入一个后缀表达式,试编写算法计算表达式的值。规定:逆波兰表达式的长度不超过一行,以$符作为输入结束,操作数之间用空格分隔,操作符只可能有+、-、*、/四种运算。例如:234 34+2*$。

[题目分析]逆波兰表达式(即后缀表达式)求值规则如下:设立运算数栈OPND,对表达式从左到右扫描(读入),当表达式中扫描到数时,压入OPND栈。当扫描到运算符时,从OPND退出两个数,进行相应运算,结果再压入OPND栈。这个过程一直进行到读出表达式结束符$,这时OPND栈中只有一个数,就是结果。

float expr( )

//从键盘输入逆波兰表达式,以‘$’表示输入结束,本算法求逆波兰式表达式的值。 {float OPND[30]; // OPND是操作数栈。 init(OPND); //两栈初始化。 float num=0.0; //数字初始化。 scanf (“%c”,&x);//x是字符型变量。 while(x!=’$’)

{switch

{case‘0’<=x<=’9’:while((x>=’0’&&x<=’9’)||x==’.’) //拼数 if(x!=’.’) //处理整数

{num=num*10+(ord(x)-ord(‘0’));

scanf(“%c”,&x);}

else //处理小数部分。 {scale=10.0; scanf(“%c”,&x); while(x>=’0’&&x<=’9’)

{num=num+(ord(x)-ord(‘0’)/scale; scale=scale*10; scanf(“%c”,&x); } }//else

push(OPND,num); num=0.0;//数压入栈,下个数初始化

case x=‘ ’:break; //遇空格,继续读下一个字符。 case x=‘+’:push(OPND,pop(OPND)+pop(OPND));break;

case x=‘-’:x1=pop(OPND);x2=pop(OPND);push(OPND,x2-x1);break; case x=‘*’:push(OPND,pop(OPND)*pop(OPND));break;

case x=‘/’:x1=pop(OPND);x2=pop(OPND);push(OPND,x2/x1);break; default: //其它符号不作处理。 }//结束switch

scanf(“%c”,&x);//读入表达式中下一个字符。 }//结束while(x!=‘$’)

printf(“后缀表达式的值为%f”,pop(OPND)); }//算法结束。

[算法讨论]假设输入的后缀表达式是正确的,未作错误检查。算法中拼数部分是核心。若遇到大于等于‘0’且小于等于‘9’的字符,认为是数。这种字符的序号减去字符‘0’的序号得出数。对于整数,每读入一个数字字符,前面得到的部分数要乘上10再加新读入的数得到新的部分数。当读到小数点,认为数的整数部分已完,要接着处理小数部分。小数部分的数要除以10(或10的幂数)变成十分位,百分位,千分位数等等,与前面部分数相加。在拼数过程中,若遇非数字字符,表示数已拼完,将数压入栈中,并且将变量num恢复为0,准备下一个数。这时对新读入的字符进入‘+’、‘-’、‘*’、‘/’及空格的判断,因此在结束处理数字字符的case后,不能加入break语句。

(5)假设以I和O分别表示入栈和出栈操作。栈的初态和终态均为空,入栈和出栈的操作序列可表示为仅由I和O组成的序列,称可以操作的序列为合法序列,否则称为非法序列。

①下面所示的序列中哪些是合法的?

A. IOIIOIOO B. IOOIOIIO C. IIIOIOIO D. IIIOOIOO ②通过对①的分析,写出一个算法,判定所给的操作序列是否合法。若合法,返回true,否则返回false(假定被判定的操作序列已存入一维数组中)。

①A和D是合法序列,B和C 是非法序列。 ②设被判定的操作序列已存入一维数组A中。 int Judge(char A[])

//判断字符数组A中的输入输出序列是否是合法序列。如是,返回true,否则返

回false。

{i=0; //i为下标。

j=k=0; //j和k分别为I和字母O的的个数。 while(A[i]!=‘\\0’) //当未到字符数组尾就作。 {switch(A[i])

{case‘I’: j++; break; //入栈次数增1。

case‘O’: k++; if(k>j){printf(“序列非法\\n”);exit(0);} }

i++; //不论A[i]是‘I’或‘O’,指针i均后移。}

if(j!=k) {printf(“序列非法\\n”);return(false);} else {printf(“序列合法\\n”);return(true);} }//算法结束。

[算法讨论]在入栈出栈序列(即由‘I’和‘O’组成的字符串)的任一位置,入栈次数(‘I’的个数)都必须大于等于出栈次数(即‘O’的个数),否则视作非法序列,立即给出信息,退出算法。整个序列(即读到字符数组中字符串的结束标记‘\\0’),入栈次数必须等于出栈次数(题目中要求栈的初态和终态都为空),否则视为非法序列。

(6)假设以带头结点的循环链表表示队列,并且只设一个指针指向队尾元素站点(注意

不设头指针) ,试编写相应的置空队、判队空 、入队和出队等算法。

算法如下: //先定义链队结构:

typedef struct queuenode{ Datatype data;

struct queuenode *next;

}QueueNode; //以上是结点类型的定义

typedef struct{ queuenode *rear;

}LinkQueue; //只设一个指向队尾元素的指针

(1)置空队

void InitQueue( LinkQueue *Q)

{ //置空队:就是使头结点成为队尾元素 QueueNode *s;

(完整版)数据结构(C语言版)第三四章习题答案

第3章栈和队列习题1.选择题(1)若让元素1,2,3,4,5依次进栈,则出栈次序不可能出现在()种情况。A.5,4,3,2,1B.2,1,5,4,3C.4,3,1,2,5D.2,3,5,4,1(2)若已知一个栈的入栈序列是1,2,3,…,n,其输出序列为p1,p2,p3,…,pn,若p1=n,则p
推荐度:
点击下载文档文档为doc格式
1xz2g04jz27px008twlp8xswm2yhdw015k1
领取福利

微信扫码领取福利

微信扫码分享