好文档 - 专业文书写作范文服务资料分享网站

谷氨酸受体

天下 分享 时间: 加入收藏 我要投稿 点赞

谷氨酸受体 种类

谷氨酸受体分为两类:一类为离子型受体,包括:N-甲基-D-天冬氨酸受体(NMDAR)、海人藻酸受体(KAR)和α-氨基-3 羟基-5 甲基-4 异恶唑受体(AMPAR),它们与离子通道偶联,形成受体通道复合物,介导快信号传递;另一类属于代谢型受体(mGluRs),它与膜内G-蛋白偶联,这些受体被激活后通过G-蛋白效应酶、脑内第二信使等组成的信号转导系统起作用,产生较缓慢的生理反应。 离子型受体

(1) NMDA 受体(NRs):其与突触的可塑性和学习记忆密切相关。通过该受体本身、其共轭的离子通道及调节部位3 者形成的复合体而发挥功能,对Ca2+高度通透。每个NMDA 受体上含有两个谷氨酸和两个甘氨酸结合识别位点,谷氨酸和甘氨酸均是受体的特异性激活剂。到目前为止已克隆出5个亚基,NMDAR1、NMDAR2(A-D)其中NMDAR1 可单独形成功能性纯寡聚体NMDAR,但NMDAR2 亚基却不具备该功能。有研究表明NMDAR可能是由NMDAR1 和NMDAR2 不同的亚基组成的一个异寡聚体。

(2) KA/AMPA 受体:它们也是受配基调控的离子通道,对Na+、K+有通透性,研究证明,一些受体亚型对Ca2+也有通透性。AMPA 家族包括4 个结构极为相似的亚基GLUR1-4,各亚基的氨基酸序列的同源性高达70%。由于氨基酸残基的疏水性分布,在靠近羧基端的部分构成4 个跨膜区。AMPA、L-谷氨酸及KA 均可激活这类离子

通道,并有AMPA 的高亲和力结合位点。天然的AMPAR 是由这4 种亚基形成的五聚体。每个单位的分子量为108kd。AMPA 受体的4 种亚基在第4 个跨膜区上游均含有1 个由38 个氨基酸残基组成的特殊区段,该区存在2 个结构相似区,分别由受体基因上的2 个相临的外显子编码。但各亚基的DNA 编码在翻译后要经过一些如:磷酸化、糖基化等修饰,这些修饰是通道功能的重要调节方式。离子型谷氨酸受体功能的多样性是通过不同亚基组装、选择性基因结合和转录前mRNA 的编辑等方式来实现的。 在大鼠中通过分子克隆技术,已发现5 种KA 受体亚型(GLUR5-7、KA-1、KA-2),利用逆转录PCR 及膜片钳技术揭示:KA 受体是由同类的不同亚基组成的异质组合体。亚基的组成对受体的功能和特性影响特别大,因为异质的KA 复合物中出现编辑的GLUR5 或GLUR6 会阻碍Ca2+的通透性。细胞可能通过 RNA 编辑改变结构,达到调控通道的Ca2+流量。 代谢型谷氨酸受体(mGLuRs)

这是通过G-蛋白偶联,调节细胞内第二信使的产生而导致代谢改变的谷氨酸受体,其可分为不同的8 个亚型mGLUR1-8,根据氨基酸序列的同源性及其药理学特征和信号转导机制的不同,可将其分为3 组,ⅠmGLUR1、mGLUR5; Ⅱ mGLUR2-3; Ⅲ mGLUR4、mGLUR6-8。Ⅰ组可被Quis 强烈活化并与磷脂酶C 途径(PLG)相偶联;Ⅱ、Ⅲ组均可与腺苷酸环化酶系统(AC)被动偶联。

编辑本段相关论文

D-Ser-NMDA受体的一种新的调控因子 陈福俊 陈福俊,何德富,周绍慈

(华东师范大学上海市脑功能基因组学重点实验室,上海 200062) 摘要:最近研究证实哺乳动物神经系统中存在内源性的D-Ser。这种内源性D-Ser在神经系统中的分布与NMDA受体的分布相平行,进一步的研究表明,D-Ser由突触旁星形胶质细胞产生,而作用于突触后NMDA受体上的Gly结合位点,对NMDA受体的功能进行调控。本文将综述D-Ser在神经系统中的分布、合成及其生理机能。

Abstract: The viewpoint that there is no endogenous D-serine in mammalian nervous system has changed based on recent published reports. The study indicated that the distribution of this kind of endogenous D-serine parallels with that of NMDA receptor in nervous system. Further study suggested that the D-serine produced in astrocytes regulates the function of NMDA receptor through the glycine-binding site of the receptor. This paper reviews the

distribution, synthesis and physiological function of D-serine in nervous system.

NMDA受体(N-methyl-D-aspartate receptor)是中枢神经系统内一类重要的兴奋性氨基酸(excitatory aminoacid, EAA)受体。NMDA受体不仅在神经系统发育过程中发挥着重要的生理作用,如可调节神经元的存活,调节神经元树突、轴突结构发育及参与突触可塑性的形成等;在神经元回路的形成中NMDA受体亦起着关键作用,有资料表明NMDA受体是学习与记忆过程中一类至关重要的受体[1]。NMDA受体受多种因子的调控,而最近发现了NMDA受体的一种特别的调控因子——D型丝氨酸(D-Serine,D-Ser)[2]。D-Ser这种新的神经调质的发现引起了神经科学界极大关注,本文将综述这方面的最新进展。

自然界中存在的氨基酸绝大多数都有两种构型:L型和D型。构成生物体中蛋白质的氨基酸通常都为L型,在细菌和无脊椎动物体内曾发现有内源性的D型氨基酸[3],而对于哺乳动物体内存在D型氨基酸的事实,过去普遍把它归结于食物来源或肠内的细菌所产生[3,4]。早期研究认为,哺乳

动物体内不能产生D型氨基酸,因为氨基酸消旋酶只发现在细菌和昆虫体内,而在哺乳动物体内还未分离纯化出这种酶。然而最近的研究报告表明在哺乳动物神经系统中存在自由D-Ser和D-天冬氨酸(D-aspartate,

D-Asp)[5,6];另有研究报告报道,大鼠额叶和顶叶皮层突触体中的磷酸丝氨酸磷酸化酶(phosphoserine phosphatase)可水解L-磷酸丝氨酸

(L-phosphoserine),最终生成L-Ser和D-Ser[7]。因而这类D型氨基酸在神经系统中的生理作用,很自然地引起了神经科学工作者的广泛关注。下面将重点阐述D-Ser在神经系统中的分布、合成及生理机能。

自有报道说在哺乳动物中枢神经系统中存在自由的D型氨基酸以来,许多科学家便把注意力转向这类不参与构成生物体内蛋白质的氨基酸上

来。采用对D-Ser具有高度选择性的抗体,利用免疫组化的方法研究发现,D-Ser主要存在于哺乳动物脑内灰质区中的Ⅱ型星形胶质细胞内,这种胶质细胞多位于突触旁边[2,8]。D-Ser分布的主要脑区为前额叶皮层和纹状体,小脑中也有微量分布[9]。令人感兴趣的是,在哺乳动物中,NMDA受体分布密度最高的是海马的CA1区、CA3区和齿状回,大脑皮层区的前脑皮层、前扣带区和梨状皮层,此外,在纹状体、丘脑、小脑颗粒细胞层也有较多分布[10]。在D-Ser存在的脑区中,往往存在着大量的NMDA受体,二者的分布存在着一种平行关系。

NMDA受体是一种独特的双重门控通道(doubly gated channel),它既受膜电位控制也受其它神经递质控制。NMDA受体被激活后,主要对Ca2+有通透性,介导持续、缓慢的去极化过程。在突触传递过程中,NMDA受体的激活需要非NMDA受体的参与,其中主要是AMPA受体

(α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor)的参与。当刺激达到一定强度时,突触前膜释放的谷氨酸作用于AMPA受体,通过AMPA受体通道的离子流增强,使得邻近NMDA受体的突触后膜局部去极化,进而导致NMDA受体通道Mg2+阻断的释放,这时谷氨酸与NMDA受体的结合便可使通道打开。此外当有甘氨酸结合到甘氨酸结合位点时,通过变构调控可以大大增强谷氨酸作用于NMDA受体后所产生的效应,另外多聚胺可增强谷氨酸对NMDA受体的作用,而Zn2+却可以抑制多聚胺的这种作用。可见,NMDA受体的激活受多种因子的调控。

D-Ser与NMDA受体的共分布现象,促使科学家进一步对二者的功能联系进行研究。最近的研究发现D-Ser是NMDA受体的一种新的独特的调质。Ascher等人研究发现,在用快速灌流制备的神经标本中,NMDA受体的活性会暂时丧失,但这种活性的暂时丧失可为甘氨酸所逆转[11]。进一步的研究表明NMDA受体上存在Gly结合位点,而NMDA受体的活化需要Gly位点的共激活[7]。但让人不解的是,在中枢神经系统中Gly的浓度在前脑是最低的,而前脑中NMDA受体的含量却很高;相反在脊髓和后脑中Gly的含量最高,但在这些区域Gly却发挥着一种抑制性神经递质的作用。有研究报

谷氨酸受体

谷氨酸受体种类谷氨酸受体分为两类:一类为离子型受体,包括:N-甲基-D-天冬氨酸受体(NMDAR)、海人藻酸受体(KAR)和α-氨基-3羟基-5甲基-4异恶唑受体(AMPAR),它们与离子通道偶联,形成受体通道复合物,介导快信号传递;另一类属于代谢型受体(mGluRs),它与膜内G-蛋白偶联,这些受体被激活后通过G-蛋白效应酶、脑内第二信使等组成的信号转导系统起作
推荐度:
点击下载文档文档为doc格式
1xxmn8hxyn00kc51ztu1
领取福利

微信扫码领取福利

微信扫码分享