309教育网 www.309edu.com
第二讲 基本初等函数、函数与方程及函数的应用
考点一 指数函数、对数函数及幂函数
1.指数与对数式的运算公式 (1)a·a=amnmnm+n,
(2)(a)=a,
(3)(ab)=ab.其中,a>0,b>0. (4)loga(MN)=logaM+logaN, (5)loga=logaM-logaN, (6)logaM=nlogaM, (7)alogNmnmmmMNna=N,
logbN(8)logaN=.其中,a>0且a≠1,b>0且b≠1,M>0,N>0.
logba2.指数函数、对数函数的图象和性质
指数函数y=a(a>0,a≠1)与对数函数y=logax(a>0,a≠1)的图象和性质,分0 xa>1两种情况:当a>1时,两函数在定义域内都为增函数,当0 都为减函数. [对点训练] ?1?b1.(2018·河南洛阳二模)已知点?a,?在幂函数f(x)=(a-1)x的图象上,则函数f(x) ?2? 是( ) A.奇函数 C.定义域内的减函数 B.偶函数 D.定义域内的增函数 ?1?bb[解析] ∵点?a,?在幂函数f(x)=(a-1)x的图象上,∴a-1=1,解得a=2,则2 ?2? 1-1 =,∴b=-1,∴f(x)=x,∴函数f(x)是定义域(-∞,0)∪(0,+∞)上的奇函数,且2在每一个区间内是减函数.故选A. [答案] A 309教育资源库 www.309edu.com 309教育网 www.309edu.com 1 2.(2018·天津卷)已知a=log2e,b=ln2,c=log1 ,则a,b,c的大小关系为( ) 32A.a>b>c C.c>b>a B.b>a>c D.c>a>b [解析] 由已知得c=log23,∵log23>log2e>1,b=ln2<1,∴c>a>b,故选D. [答案] D 3.(2018·山东潍坊一模)若函数f(x)=a-a(a>0且a≠1)在R上为减函数,则函数 x-xy=loga(|x|-1)的图象可以是( ) [解析] 因函数f(x)=a-a(a>0且a≠1)在R上为减函数,故0 易知函数y=loga(|x|-1)是偶函数,定义域为{x|x>1或x<-1},x>1时函数y=loga(|x|-1)的图象可以通过函数y=logax的图象向右平移1个单位得到,故选D. [答案] D 4.(2018·江西九江七校联考)若函数f(x)=log2(x-ax-3a)在区间(-∞,-2]上是减函数,则实数a的取值范围是________. [解析] 由题意得x-ax-3a>0在区间(-∞,-2]上恒成立且函数y=x-ax-3a在(-∞,-2]上递减,则≥-2且(-2)-(-2)a-3a>0,解得实数a的取值范围是[-4,4). 2 [答案] [-4,4) [快速审题] 看到指数式、对数式,想到指数、对数的运算性质;看到指数函数、对数函数、幂函数,想到它们的图象和性质. 2 2 2 x-xa2 基本初等函数的图象与性质的应用技巧 (1)对数函数与指数函数的单调性都取决于其底数的取值,当底数a的值不确定时,要注意分a>1和01时,两函数在定义域内都为增函数;当0 (2)由指数函数、对数函数与其他函数复合而成的函数,其性质的研究往往通过换元法转化为两个基本初等函数的有关性质,然后根据复合函数的性质与相关函数的性质之间的关 309教育资源库 www.309edu.com