小学数学速算与巧算方法例解【转】
速算与巧算
在小学数学中,关于整数、小数、分数的四则运算,怎么样才能算得既快又准确呢?这就需要我们熟练地掌握计算法则和运算顺序,根据题目本身的特点,综合应用各种运算定律和性质,或利用和、差、积、商变化规律及有关运算公式,选用合理、灵活的计算方法。速算和巧算不仅能简便运算过程,化繁为简,化难为易,同时又会算得又快又准确。 一、“凑整”先算
1.计算:(1)24+44+56 (2)53+36+47
解:(1)24+44+56=24+(44+56) =24+100=124
这样想:因为44+56=100是个整百的数,所以先把它们的和算出来. (2)53+36+47=53+47+36 =(53+47)+36=100+36=136
这样想:因为53+47=100是个整百的数,所以先把+47带着符号搬家,搬到+36前面;然后再把53+47的和算出来.
2.计算:(1)96+15 (2)52+69
解:(1)96+15=96+(4+11) =(96+4)+11=100+11=111
这样想:把15分拆成15=4+11,这是因为96+4=100,可凑整先算. (2)52+69=(21+31)+69 =21+(31+69)=21+100=121
这样想:因为69+31=100,所以把52分拆成21与31之和,再把31+69=100凑整先算. 3.计算:(1)63+18+19 (2)28+28+28 解:(1)63+18+19 =60+2+1+18+19 =60+(2+18)+(1+19) =60+20+20=100
这样想:将63分拆成63=60+2+1就是因为2+18和1+19可以凑整先算. (2)28+28+28
=(28+2)+(28+2)+(28+2)-6 =30+30+30-6=90-6=84
这样想:因为28+2=30可凑整,但最后要把多加的三个2减去. 二、改变运算顺序:在只有“+”、“-”号的混合算式中,运算顺序可改变 计算:(1)45-18+19 (2)45+18-19 解:(1)45-18+19=45+19-18 =45+(19-18)=45+1=46
这样想:把+19带着符号搬家,搬到-18的前面.然后先算19-18=1. (2)45+18-19=45+(18-19)
=45-1=44
这样想:加18减19的结果就等于减1. 三、计算等差连续数的和
相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如: 1,2,3,4,5,6,7,8,9 1,3,5,7,9 2,4,6,8,10 3,6,9,12,15
4,8,12,16,20等等都是等差连续数.
1. 等差连续数的个数是奇数时,它们的和等于中间数乘以个数,简记成: (1)计算:1+2+3+4+5+6+7+8+9 =5×9 中间数是5 =45 共9个数
(2)计算:1+3+5+7+9 =5×5 中间数是5 =25 共有5个数 (3)计算:2+4+6+8+10 =6×5 中间数是6 =30 共有5个数
(4)计算:3+6+9+12+15 =9×5 中间数是9 =45 共有5个数
(5)计算:4+8+12+16+20 =12×5 中间数是12 =60 共有5个数
2. 等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的一半,简记成: (1)计算:
1+2+3+4+5+6+7+8+9+10 =(1+10)×5=11×5=55
共10个数,个数的一半是5,首数是1,末数是10. (2)计算:
3+5+7+9+11+13+15+17 =(3+17)×4=20×4=80
共8个数,个数的一半是4,首数是3,末数是17. (3)计算:
2+4+6+8+10+12+14+16+18+20 =(2+20)×5=110
共10个数,个数的一半是5,首数是2,末数是20. 四、基准数法
(1)计算:23+20+19+22+18+21
解:仔细观察,各个加数的大小都接近20,所以可以把每个加数先按20相加,然后再把少算的加上,把多算的减去.
23+20+19+22+18+21 =20×6+3+0-1+2-2+1
=120+3=123
6个加数都按20相加,其和=20×6=120.23按20计算就少加了“3”,所以再加上“3”;19按20计算多加了“1”,所以再减去“1”,以此类推. (2)计算:102+100+99+101+98
解:方法1:仔细观察,可知各个加数都接近100,所以选100为基准数,采用基准数法进行巧算. 102+100+99+101+98 =100×5+2+0-1+1-2=500
方法2:仔细观察,可将5个数重新排列如下:(实际上就是把有的加数带有符号搬家) 102+100+99+101+98 =98+99+100+101+102 =100×5=500
可发现这是一个等差连续数的求和问题,中间数是100,个数是5. 加法中的巧算 1.什么叫“补数”?
两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的“补数”。 如:1+9=10,3+7=10, 2+8=10,4+6=10, 5+5=10。
又如:11+89=100,33+67=100, 22+78=100,44+56=100, 55+45=100,
在上面算式中,1叫9的“补数”;89叫11的“补数”,11也叫89的“补数”.也就是说两个数互为“补数”。 对于一个较大的数,如何能很快地算出它的“补数”来呢?一般来说,可以这样“凑”数:从最高位凑起,使各位数字相加得9,到最后个位数字相加得10。 如: 87655→12345, 46802→53198, 87362→12638,…
下面讲利用“补数”巧算加法,通常称为“凑整法”。 2.互补数先加。 例1 巧算下面各题:
①36+87+64②99+136+101 ③ 1361+972+639+28 解:①式=(36+64)+87 =100+87=187
②式=(99+101)+136 =200+136=336
③式=(1361+639)+(972+28) =2000+1000=3000 3.拆出补数来先加。
例2 ①188+873 ②548+996 ③9898+203
解:①式=(188+12)+(873-12)(熟练之后,此步可略) =200+861=1061
②式=(548-4)+(996+4) =544+1000=1544
③式=(9898+102)+(203-102)
=10000+101=10101 4.竖式运算中互补数先加。 如:
二、减法中的巧算
1.把几个互为“补数”的减数先加起来,再从被减数中减去。 例 3① 300-73-27 ② 1000-90-80-20-10 解:①式= 300-(73+ 27) =300-100=200
②式=1000-(90+80+20+10) =1000-200=800
2.先减去那些与被减数有相同尾数的减数。 例4① 4723-(723+189) ② 2356-159-256 解:①式=4723-723-189 =4000-189=3811 ②式=2356-256-159 =2100-159 =1941
3.利用“补数”把接近整十、整百、整千…的数先变整,再运算(注意把多加的数再减去,把多减的数再加上)。
例 5 ①506-397 ②323-189 ③467+997 ④987-178-222-390
解:①式=500+6-400+3(把多减的 3再加上) =109
②式=323-200+11(把多减的11再加上) =123+11=134
③式=467+1000-3(把多加的3再减去) =1464
④式=987-(178+222)-390 =987-400-400+10=197 三、加减混合式的巧算 1.去括号和添括号的法则
在只有加减运算的算式里,如果括号前面是“+”号,则不论去掉括号或添上括号,括号里面的运算符号都不变;如果括号前面是“-”号,则不论去掉括号或添上括号,括号里面的运算符号都要改变,“+”变“-”,“-”变“+”,即:
a+(b+c+d)=a+b+c+d a-(b+a+d)=a-b-c-d a-(b-c)=a-b+c 例6 ①100+(10+20+30) ② 100-(10+20+3O)
③ 100-(30-10)
解:①式=100+10+20+30 =160
②式=100-10-20-30 =40
③式=100-30+10 =80
例7 计算下面各题: ① 100+10+20+30 ② 100-10-20-30 ③ 100-30+10
解:①式=100+(10+20+30) =100+60=160
②式=100-(10+20+30) =100-60=40 ③式=100-(30-10) =100-20=80 2.带符号“搬家”
例8 计算 325+46-125+54 解:原式=325-125+46+54 =(325-125)+(46+54) =200+100=300
注意:每个数前面的运算符号是这个数的符号.如+46,-125,+54.而325前面虽然没有符号,应看作是+325。
3.两个数相同而符号相反的数可以直接“抵消”掉 例9 计算9+2-9+3 解:原式=9-9+2+3=5 4.找“基准数”法
几个比较接近于某一整数的数相加时,选这个整数为“基准数”。 例10 计算 78+76+83+82+77+80+79+85 =640
1.两数的乘积是整十、整百、整千的,要先乘.为此,要牢记下面这三个特殊的等式: 5×2=10 25×4=100 125×8=1000 例1 计算①123×4×25 ② 125×2×8×25×5×4 解:①式=123×(4×25) =123×100=12300
②式=(125×8)×(25×4)×(5×2) =1000×100×10=1000000 2.分解因数,凑整先乘。 例 2计算① 24×25 ② 56×125
(完整版)常用的巧算和速算方法



