.
应用一元一次方程——“希望工程”义演
1.等量关系的确定
列方程解应用题的关键是找出能够反映题意的一个等量关系.对于复杂问题的等量关系可采用列表法分析数量之间的关系.一般可从以下几个方面确定等量关系:
(1)抓住问题中的关键词,确定等量关系.如问题中的“和”、“差”、“倍”、“多”、“少”、“快”、“慢”等都是确定等量关系的关键词.
(2)利用公式或基本数量关系找等量关系.
(3)从变化的关系中寻找不变的量,确定等量关系.
【例1】 刘成用150元买了甲、乙两种书,共20本,甲种书单价10元,乙种书单价5元,则刘成买了这两种书各多少本?
2.未知数的设法
较复杂的问题,未知量可能有两个或两个以上,选择一个适当的未知量设为未知数非常重要.未知数设的适当,能给列方程带来简便.
未知数的设法大致有两种:直接设未知数和间接设未知数.另外还可以根据解决问题的需要设出辅助未知数帮助解答.
(1)直接设未知数
直接设未知数,就是题目中问什么就设什么.对于只有一个相等关系的问题,直接设未知数就能解决问题.而对于较复杂的问题,直接设未知数时列方程可能会较困难.
(2)间接设未知数,就是所设的未知数不是问题中最后所要求的未知数,而是设另外的量为未知数,这样做的好处是便于理顺数量关系、易于列方程.
(3)设辅助未知数
在列方程解应用题时,有时为了解题的需要,将某些量之间的关系说得更清晰,我们引入一些辅助未知数.这些未知数在解方程的过程中,往往是约掉了或者抵消了,最后求出的问题的解与这些未知数无关,因此,被称为辅助未知数.
________________________________________________________
________________________________________________________
1 / 4'.
.
111
【例2-1】 一位老人立下遗嘱:把17头牛按2,3,9分给他的大儿子、二儿子、三儿子,问三个儿子各分得多少头牛?
3.几种复杂的应用问题
含有两个或两个以上的等量关系的应用题主要有以下三种: (1)按比例分配问题
按比例分配问题是指已知两个或几个未知量的比,分别求几个未知量的问题.
比例分配问题中的相等关系是: 不同成分的数量之和=全部数量. (2)工程问题
工程问题中的相等关系是: 工作量=工作效率×工作时间;
甲的工作效率+乙的工作效率=合作的工作效率; 甲完成的工作量+乙完成的工作量=完成的总工作量.
解答工程类问题时,常常把总工作量看成整体1.找出工作效率(即单位时间内的工作量)是解答的关键.
(3)资源调配问题
资源调配问题一般采取列表法分析数量关系,利用表格,可以很清晰地表达出各个数量之间的关系.其中的相等关系要根据题目提供的等量关系确定.
【例3】 甲、乙两人想共同承包一项工程,甲单独做30天完成,乙单独做20天完成,合同规定15天完成.否则每超过1天罚款1 000元,甲、乙两人经商量后签订了该合同.
(1)正常情况下,甲、乙两人能否完成该合同?为什么? 经典练习巩固: 一、选择题
1.根据图中提供的信息,可知一个杯子的价格是( )
2 / 4'.
.
A.51元 B.35元 C.8元 D.7.5元
2.某牧场放养的鸵鸟和奶牛一共70头,已知鸵鸟和奶牛的腿数之和为196条,则鸵鸟比奶牛多( )
A.20头 B.14头 C.15头 D.13头 3.学校买篮球和排球共30个,共用936元,篮球每个36元,排球每个24元,则篮球买了( )
A.12个 B.15个 C.16个 D.18个 二、填空题
4.(2012·山西中考)图1是边长为30cm的正方形纸板,裁掉阴影后将其折叠成图2所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是 cm3.
5.希望中学团委组织65名新团员为学校建花坛搬砖,女同学每人每次搬6块,男同学每人每次搬8块,每人搬了4次,共搬了1800块,问这些新团员中有 名男同学.
6.一个三位数,其各位上数字之和为15,百位上的数字比十位上的数字少1,个位上的数字是十位上的数字的2倍,则这个三位数
3 / 4'.
.
是 . 三、解答题
7.列方程解应用题:今年“六一”儿童节,张红用8.8元钱购买了甲、乙两种礼物,甲礼物每件1.2元,乙礼物每件0.8元,其中甲礼物比乙礼物少1件,问甲、乙两种礼物各买了多少件? 8.老牛:“累死我了!”
小马:“你还累?这么大的个儿,才比我多驮了2个.” 老牛:“哼,我从你背上拿来1个,我的包裹数就是你的2倍!” 小马:…
根据老牛和小马的对话,你能列方程求出它们各驮了多少个包裹吗?
4 / 4'.