...
河南省许昌市许昌县中考数学一模试卷
一.选择题(共10小题,满分30分,每小题3分)
1.若一元二次方程x2﹣8x+a=0有一个根是x=3,则方程的另一个根是( ) A.x=﹣5
B.x=5
C.x=15
D.x=﹣15
2.如图是一个中心对称图形,A为对称中心,若∠C=90°,∠B=60°,BC=1,则BB′的长为( )
A.4 B. C. D.
3.已知∠A为锐角,且sinA=A.15°
B.30°
,那么∠A等于( )
C.45°
D.60°
4.如图,在△ABC中,已知∠ADE=∠B,则下列等式成立的是( )
A. B. C. D.
5.如图,AB是⊙O的直径,点C、D在⊙O上,且点C、D在AB的异侧,连接AD、BD、OD、OC,若∠ABD=15°,且AD∥OC,则∠BOC的度数为( )
A.120° B.105° C.100° D.110°
6.如图,直线y1=kx+n(k≠0)与抛物线y2=ax2+bx+c(a≠0)分别交于A(﹣1,0),B(2,﹣3)两点,那么当y1>y2时,x的取值范围是( )
...
...
A.﹣1<x<2 B.x>2 C.x<﹣1或x>2 D.x≤﹣1
7.小明、小颖和小凡都想去看山西第二届文博会,但现在只有一张门票,三人决定一起做游戏,谁获胜谁就去,游戏规则是:连续掷两枚质地均匀的硬币,若两枚正面朝上,则小明获胜,若两枚反面朝上,则小颖获胜;若一枚正面朝上,一枚反面朝上,则小凡获胜,关于这个游戏,下列判断正确的是( )
A.三人获胜的概率相同 C.小颖获胜的概率大
B.小明获胜的概率大 D.小凡获胜的概率大
8.对于二次函数y=﹣x2+x﹣4,下列说法正确的是( ) A.当x>0时,y随x的增大而增大 B.图象的顶点坐标为(﹣2,﹣7) C.当x=2时,y有最大值﹣3 D.图象与x轴有两个交点
9.如图,菱形OABC的一边OA在x轴的正半轴上,O是坐标原点,tan∠AOC=,反比例函数y=象经过点C,与AB交于点D,则△COD的面积为( )
的图
A.12 B.20 C.24 D.40
10.如图,将△ABC绕点C顺时针旋转,点B的对应点为点E,点A的对应点为点D,当点E恰好落在边AC上时,连接AD,∠ACB=36°,AB=BC,AC=2,则AB的长度是( )
...
...
A.﹣1 B.1 C. D.
二.填空题(共5小题,满分15分,每小题3分) 11.方程2x2﹣5x﹣1=0的解是 .
12.如图,在平面直角坐标系中,直线y=x与双曲线y=(k≠0)交于点A,过点C(0,2)作AO的平行线交双曲线于点B,连接AB并延长与y轴交于点D(0,4),则k的值为 .
13.如图,在△ABC中,AD、BE分别是边BC、AC上的中线,AB=AC=5,cos∠C=,那么GE= .
14.如图,矩形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(7,3),点E在边AB上,且AE=1,已知点P为y轴上一动点,连接EP,过点O作直线EP的垂线段,垂足为点H,在点P从点F(0,运动到原点O的过程中,点H的运动路径长为 .
)
15.如图,点E是矩形ABCD中CD边上一点,将△BCE沿BE折叠为△BFE,点F落在边AD上,若AB=8,
BC=10,则CE= .
...
...
三.解答题(共8小题,满分75分)
16.已知等腰△ABC的一边长为5,另两边的长是关于x的一元二次方程x2﹣6x+m=0的两个根,求m的值. 17.消费者在许昌市某火锅店饭后买单时可以参与一个抽奖游戏,规则如下:有4张纸牌,它们的背面都是小猪佩奇头像,正面为2张笑脸、2张哭脸.现将4张纸牌洗匀后背面朝上摆放到桌上,然后让消费者去翻纸牌.
(1)现小杨有一次翻牌机会,若正面是笑脸的就获奖,正面是哭脸的不获奖.她从中随机翻开一张纸牌,小芳获奖的概率.
(2)如果小杨、小月都有翻两张牌的机会.小杨先翻一张,放回后再翻一张;小月同时翻开两张纸牌.他们翻开的两张纸牌中只要出现一张笑脸就获奖.他们谁获奖的机会更大些?通过树状图或列表法分析说明理由.
18.如图,点C是⊙O直径AB上一点,过C作CD⊥AB交⊙O于点D,连接DA,延长BA至点P,连接DP,使∠PDA=∠ADC.
(1)求证:PD是⊙O的切线;
(2)若AC=3,tan∠PDC=,求BC的长.
19.如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(n≠0)的图象交于第二、四象限内的A、B两点,与x轴交于点C,点B 坐标为(m,﹣1),AD⊥x轴,且AD=3,tan∠AOD=.
(1)求该反比例函数和一次函数的解析式; (2)求△AOB的面积;
(3)点E是x轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点的坐标.
...
...
20.如图,一艘轮船在A处测得灯塔P在船的北偏东30°的方向,轮船沿着北偏东60°的方向航行16km后到达B处,这时灯塔P在船的北偏西75°的方向.求灯塔P与B之间的距离(结果保留根号).
21.某工厂大门是一抛物线型水泥建筑物,如图①所示,大门地面宽AB=4 m,顶部C离地面高度为4.8 m. (1)在图②所建立的平面直角坐标系xOy中,求这条抛物线对应的函数表达式;
(2)现有一辆运货卡车高2.6m,宽2.4m,欲通过这个大门,请判断这辆卡车能否顺利通过.
22.如图,正方形ABCD的边长为(1)求证:△ABF∽△ACE; (2)求tan∠BAE的值;
+1,对角线AC、BD相交于点O,AE平分∠BAC分别交BC、BD于E、F
(3)在线段AC上找一点P,使得PE+PF最小,求出最小值.
23.在平面直角坐标系中,已知抛物线y=ax2+bx+c(a≠0)经过点A(1,0)、B(4,0),C(0,2)三
...